Skip to main content
Log in

Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

An Erratum to this article was published on 29 January 2008

Abstract

Hyperhomocysteinemia (HHcy) is a critical independent risk factor for cardiovascular diseases. However, to date, no satisfactory strategies to prevent HHcy exist. Since homocysteine (Hcy) and endogenous H2S are both metabolites of sulfur-containing amino acids, we aimed to investigate whether a metabolic product of Hcy and H2S, may antagonize in part the cardiovascular effects of Hcy. In the HHcy rat model injected subcutaneously with Hcy for 3 weeks, H2S levels and the H2S-generating enzyme cystathionine γ lyase (CSE) activity in the myocardium were decreased. The intraperitoneal injection of H2S gas saturation solution significantly reduced plasma total Hcy (tHcy) concentration and decreased lipid peroxidation formation (i.e., lowered manodialdehyde and conjugated diene levels in myocardia and plasma). The activities of myocardial mitochondrial respiratory enzymes succinate dehydrogenase, cytochrome oxidase, and manganese superoxide dismutase, related to reactive oxygen species metabolism, were significantly dysfunctional in HHcy rats. The H2S administration restored the level of enzyme activities and accelerated the scavenging of H2O2 and superoxide anion generated by Hcy in isolated mitochondria. The H2S treatment also inhibited the expression of glucose-regulated protein 78, a marker of endoplasmic reticulum (ER) stress, induced by Hcy in vivo and in vitro. Thus, HHcy impaired the myocardial CSE/H2S pathway, and the administration of H2S protected the myocardium from oxidative and ER stress induced by HHcy, which suggests that an endogenous metabolic balance of sulfur-containing amino acids may be a novel strategy for treatment of HHcy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar B, Rojas JC, Collados MT (2004) Metabolism of homocysteine and its relationship with cardiovascular disease. J Thromb Thrombolysis 18:75–87

    Article  PubMed  CAS  Google Scholar 

  • Albery WJ, Cass AE, Mangold BP, Shu ZX (1990) Inhibited enzyme electrodes. Part 3. A sensor for low levels of H2S and HCN. Biosens Bioelectron 5:397–413

    Article  PubMed  CAS  Google Scholar 

  • Allen RC (1986) Phagocytic leukocyte oxygenation activities and chemiluminescence: a kinetic approach to analysis. Methods Enzymol 133:449–493

    PubMed  CAS  Google Scholar 

  • Araki A, Sako Y (1987) Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 422:43–52

    Article  PubMed  CAS  Google Scholar 

  • Austin RC, Sood SK, Dorward AM, Singh G, Shaughnessy SG, Pamidi S, Outinen PA, Weitz JI (1998) Homocysteine-dependent alterations in mitochondrial gene expression, function and structure. Homocysteine and H2O2 act synergistically to enhance mitochondrial damage. J Biol Chem 273:30808–30817

    Article  PubMed  CAS  Google Scholar 

  • Austin RC, Lentz SR, Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11(Suppl 1):S56–64

    Article  PubMed  CAS  Google Scholar 

  • Blayney L, Bailey-Wood R, Jacobs A, Henderson A, Muir J (1976) The effects of iron deficiency on the respiratory function and cytochrome content of rat heart mitochondria. Circ Res 39:744–748

    PubMed  CAS  Google Scholar 

  • Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, Wang H, Nordrehaug JE, Arnesen E, Rasmussen K (2006) Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 354:1578–1588

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Xu J, Yu F, Zhao J, Tang X, Tang C (2004a) Taurine protected myocardial mitochondria injury induced by hyperhomocysteinemia in rats. Amino Acids 27:37–48

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Xu JX, Zhao J, Pang YZ, Tang CS, Qi YF (2004b) Taurine antagonized oxidative stress injury induced by homocysteine in rat vascular smooth muscle cells. Acta Pharmacol Sin 25:341–346

    PubMed  CAS  Google Scholar 

  • Chang L, Zhao J, Xu J, Jiang W, Tang CS, Qi YF (2004c) Effects of taurine and homocysteine on calcium homeostasis and hydrogen peroxide and superoxide anions in rat myocardial mitochondria. Clin Exp Pharmacol Physiol 31:237–243

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Poddar R, Tipa EV, Dibello PM, Moravec CD, Robinson K, Green R, Kruger WD, Garrow TA, Jacobsen DW (1999) Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul 39:93–109

    Article  PubMed  CAS  Google Scholar 

  • Dai J, Li W, Chang L, Zhang Z, Tang C, Wang N, Zhu Y, Wang X (2006) Role of redox factor-1 in hyperhomocysteinemia-accelerated atherosclerosis. Free Radic Biol Med 41:1566–1577

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  PubMed  CAS  Google Scholar 

  • Das DK, Engelman RM, Kimura Y (1993) Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischaemia. Cardiovasc Res 27:578–584

    Article  PubMed  CAS  Google Scholar 

  • Deplancke BGH (2003) Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J 17:1310–1312

    PubMed  CAS  Google Scholar 

  • Devi S, Kennedy RH, Joseph L, Shekhawat NS, Melchert RB, Joseph J (2006) Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc Pathol 15:75–82

    Article  PubMed  CAS  Google Scholar 

  • Di Meo S, Venditti P (2001) Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 10:125–140

    Article  PubMed  CAS  Google Scholar 

  • Dorman DC, Moulin FJ, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 65:18–25

    Article  PubMed  CAS  Google Scholar 

  • Dusitanond P, Eikelboom JW, Hankey GJ, Thom J, Gilmore G, Loh K, Yi Q, Klijn CJ, Langton P, van Bockxmeer FM, Baker R, Jamrozik K (2005) Homocysteine-lowering treatment with folic acid, cobalamin, and pyridoxine does not reduce blood markers of inflammation, endothelial dysfunction, or hypercoagulability in patients with previous transient ischemic attack or stroke: a randomized substudy of the VITATOPS trial. Stroke 36:144–146

    Article  PubMed  CAS  Google Scholar 

  • Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565

    Article  PubMed  CAS  Google Scholar 

  • Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004a) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318:756–763

    Article  PubMed  CAS  Google Scholar 

  • Geng B, Yan H, Zhong GZ, Zhang CY, Chen XB, Jiang HF, Tang CS, Du JB (2004b) Hydrogen sulfide: a novel cardiovascular functional regulatory gas factor. Beijing Da Xue Xue Bao 36:106

    PubMed  Google Scholar 

  • Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004c) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362–368

    Article  PubMed  CAS  Google Scholar 

  • Herrmann M, Taban-Shomal O, Hubner U, Bohm M, Herrmann W (2006) A review of homocysteine and heart failure. Eur J Heart Fail

  • Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–1576

    PubMed  CAS  Google Scholar 

  • Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E, Poddar R, Jacobsen DW, Zhang K, Kaufman RJ, Austin RC (2003) TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem 278:30317–30327

    Article  PubMed  CAS  Google Scholar 

  • Jonasson T, Ohlin AK, Gottsater A, Hultberg B, Ohlin H (2005) Plasma homocysteine and markers for oxidative stress and inflammation in patients with coronary artery disease–a prospective randomized study of vitamin supplementation. Clin Chem Lab Med 43:628–634

    Article  PubMed  CAS  Google Scholar 

  • Joseph J, Joseph L, Shekhawat NS, Devi S, Wang J, Melchert RB, Hauer-Jensen M, Kennedy RH (2003) Hyperhomocysteinemia leads to pathological ventricular hypertrophy in normotensive rats. Am J Physiol Heart Circ Physiol 285:H679–686

    PubMed  CAS  Google Scholar 

  • Kamoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26:243–254

    Article  PubMed  CAS  Google Scholar 

  • Khan AA, Schuler MM, Prior MG, Yong S, Coppock RW, Florence LZ, Lillie LE (1990) Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicol Appl Pharmacol 103:482–490

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. Faseb J 18:1165–1167

    PubMed  CAS  Google Scholar 

  • Koenitzer JR, Isbell TS, Patel HD, Benavides GA, Dickinson DA, Patel RP, Darley-Usmar VM, Lancaster JR Jr., Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am J Physiol Heart Circ Physiol 292:H1953–1960

    Article  PubMed  CAS  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90

    Article  PubMed  CAS  Google Scholar 

  • Lefer DJ (2007) A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci USA 104:17907–17908

    Article  PubMed  CAS  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  PubMed  CAS  Google Scholar 

  • Likogianni V, Janel N, Ledru A, Beaune P, Paul JL, Demuth K (2006) Thiol compounds metabolism in mice, rats and humans: comparative study and potential explanation of rodents protection against vascular diseases. Clin Chim Acta 372:140–146

    Article  PubMed  CAS  Google Scholar 

  • Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, McQueen MJ, Probstfield J, Fodor G, Held C, Genest J Jr. (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354:1567–1577

    Article  PubMed  CAS  Google Scholar 

  • Montessuit C, Papageorgiou I, Campos L, Lerch R (2006) Retinoic acids increase expression of GLUT4 in dedifferentiated and hypertrophied cardiac myocytes. Basic Res Cardiol 101:27–35

    Article  PubMed  CAS  Google Scholar 

  • Moore K, Roberts LJ 2nd (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671

    Article  PubMed  CAS  Google Scholar 

  • Nonaka H, Tsujino T, Watari Y, Emoto N, Yokoyama M (2001) Taurine prevents the decrease in expression and secretion of extracellular superoxide dismutase induced by homocysteine: amelioration of homocysteine-induced endoplasmic reticulum stress by taurine. Circulation 104:1165–1170

    Article  PubMed  CAS  Google Scholar 

  • Perna AF, Ingrosso D, De Santo NG (2003) Homocysteine and oxidative stress. Amino Acids 25:409–417

    Article  PubMed  CAS  Google Scholar 

  • Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

    PubMed  CAS  Google Scholar 

  • Ramazzotto LJ, Pliskin M, Rochvarg E (1970) The effect of freezing on the viability of rat heart muscle as measured by cytochrome oxidase activity. Cryobiology 7:256–258

    Article  PubMed  CAS  Google Scholar 

  • Searcy DG, Whitehead JP, Maroney MJ (1995) Interaction of Cu,Zn superoxide dismutase with hydrogen sulfide. Arch Biochem Biophys 318:251–263

    Article  PubMed  CAS  Google Scholar 

  • Siow YL, Au-Yeung KK, Woo CW, O K (2006) Homocysteine stimulates phosphorylation of NADPH oxidase p47phox and p67phox subunits in monocytes via protein kinase Cbeta activation. Biochem J 398:73–82

    Article  PubMed  CAS  Google Scholar 

  • Splaver A, Lamas GA, Hennekens CH (2004) Homocysteine and cardiovascular disease: biological mechanisms, observational epidemiology, and the need for randomized trials. Am Heart J 148:34–40

    Article  PubMed  CAS  Google Scholar 

  • Stanger O, Semmelrock HJ, Wonisch W, Bos U, Pabst E, Wascher TC (2002) Effects of folate treatment and homocysteine lowering on resistance vessel reactivity in atherosclerotic subjects. J Pharmacol Exp Ther 303:158–162

    Article  PubMed  CAS  Google Scholar 

  • Stefanello FM, Franzon R, Tagliari B, Wannmacher C, Wajner M, Wyse AT (2005) Reduction of butyrylcholinesterase activity in rat serum subjected to hyperhomocysteinemia. Metab Brain Dis 20:97–103

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Matte C, Vieira PS, Rombaldi F, Wannmacher CM, Wajner M, Wyse AT (2002) Reduction of Na(+),K(+)-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Li X, Du J (2006) Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system. Curr Vasc Pharmacol 4:17–22

    Article  PubMed  CAS  Google Scholar 

  • Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC (2005) Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 289:H2649–2656

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya T, Krausz MM, Kobayashi M, Shepro D, Hechtman HB (1982) Myocardial protection with prostacyclin after lethal endotoxemia. Surgery 92:101–108

    PubMed  CAS  Google Scholar 

  • Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  • Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5:493–501

    Article  PubMed  CAS  Google Scholar 

  • Warenycia MW, Smith KA, Blashko CS, Kombian SB, Reiffenstein RJ (1989) Monoamine oxidase inhibition as a sequel of hydrogen sulfide intoxication: increases in brain catecholamine and 5-hydroxytryptamine levels. Arch-Toxicol 63:131–136

    Article  PubMed  CAS  Google Scholar 

  • Wedding RT (1987) Sulfide determination: ion-specific electrode. Methods Enzymol 143:29–31

    PubMed  CAS  Google Scholar 

  • Wei YH, Lu CY, Lee HC, Pang CY, Ma YS (1998) Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci 854:155–170

    Article  PubMed  CAS  Google Scholar 

  • Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90:765–768

    Article  PubMed  CAS  Google Scholar 

  • Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, Armstrong JS, Moore PK (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798

    Article  PubMed  CAS  Google Scholar 

  • Xie YW, Wolin MS (1996) Role of nitric oxide and its interaction with superoxide in the suppression of cardiac muscle mitochondrial respiration. Involvement in response to hypoxia/reoxygenation. Circulation 94:2580–2586

    PubMed  CAS  Google Scholar 

  • Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S (2001) Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 276:35867–35874

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. Embo J 20:6008–6016

    Article  PubMed  CAS  Google Scholar 

  • Zhu YZ, Wang ZJ, Ho P, Loke YY, Zhu YC, Huang SH, Tan CS, Whiteman M, Lu J, Moore PK (2007) Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol 102:261–268

    Article  PubMed  CAS  Google Scholar 

  • Zulli A, Hare DL, Buxton BF, Black MJ (2006) The combination of high dietary methionine plus cholesterol induces myocardial fibrosis in rabbits. Atherosclerosis 185:278–281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of the People’s Republic China (No: 30400151), the Natural Science Foundation of Beijing (No 7052043), the Major State Basic Research Development Program of the People’s Republic of China (No. 2006CB503807) and the National Science Fund for Distinguished Young Scholars (No: 30425010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Geng.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00726-008-0027-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Geng, B., Yu, F. et al. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34, 573–585 (2008). https://doi.org/10.1007/s00726-007-0011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-007-0011-8

Keywords

Navigation