Skip to main content
Log in

Interaction Kinetics of Sulfadiazine and N-Acetyl-sulfadiazine with Soil Humic Acid: ESR Investigations with Nitroxide Spin Label

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The interaction of sulfadiazine (SDZ) and its main metabolite N-acetyl-SDZ (N-ac-SDZ) with model humic acid was investigated with stable paramagnetic nitroxide spin probes. Leonardite humic acid (LHA) was mixed with laccase to enhance the amount of reactive quinone groups of LHA and then incubated with nitroxide spin-labelled analogs of SDZ and N-ac-SDZ. The labeling at the pyrimidine moiety of SDZ leaves the aniline moiety susceptible to covalent binding to LHA, which is blocked by the N-acetylation. A broadened electron spin resonance (ESR) signal was observed for SDZ, which increased immediately after incubation and indicates strong restriction of the re-orientational motion of the spin probe, i.e., immobilization due covalent binding of the aniline moiety of SDZ to reactive quinone sites of LHA. A fast first-order reaction with a time constant of 17.6 ± 3.4 h of covalent binding was determined. The broadened ESR signal of N-ac-SDZ declined immediately after incubation with LHA and is caused by unspecific sorption to LHA, not by covalent binding. Short time constants of the bound and free SDZ were found for the reduction by the antioxidant sodium ascorbate demonstrating that SDZ and N-ac-SDZ are not physically entrapped by LHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sales of veterinary antimicrobial agents in 30 European countries in 2015 (EMA/184855/2017). (European Medicines Agency, London, 2017), http://www.ema.europa.eu/docs/en_GB/document_library/Report/2017/10/WC500236750.pdf. Accessed 18 Jun 2018

  2. Critically important antimicrobials for human medicine—5th rev. (World Health Organization, Geneva, 2017), http://who.int/foodsafety/publications/antimicrobials-fifth/en/. Accessed 18 Jun 2018

  3. S. Jechalke, H. Heuer, J. Siemens, W. Amelung, K. Smalla, Trends Microbiol. 22, 536 (2014)

    Article  Google Scholar 

  4. B. Gevao, K. Semple, K.C. Jones, Environ. Pollut. 108, 3 (2000)

    Article  Google Scholar 

  5. H. Heuer, A. Focks, M. Lamshöft, K. Smalla, M. Matthies, M. Spiteller, Soil Biol. Biochem. 40, 1892 (2008)

    Article  Google Scholar 

  6. M. Förster, V. Laabs, M. Lamshöft, J. Groeneweg, M. Krauss, M. Kaupenjohann, W. Amelung, Environ. Sci. Technol. 43, 1824 (2009)

    Article  ADS  Google Scholar 

  7. C. Zarfl, J. Klasmeier, M. Matthies, Chemosphere 77, 720 (2009)

    Article  ADS  Google Scholar 

  8. R. Kreuzig, S. Höltge, Environ. Toxicol. Chem. 24, 771 (2005)

    Article  Google Scholar 

  9. T. Müller, I. Rosendahl, A. Focks, J. Siemens, J. Klasmeier, M. Matthies, Environ. Pollut. 172, 180 (2013)

    Article  Google Scholar 

  10. F. Führ, H. Ophoff, P. Burauel, U. Wanner, K. Haider, Modification of Definition of Bound Residues, in Pesticide Bound Residues in Soil, ed. by F. Führ, H. Ophoff (Wiley-VCH, Weinheim, 1998), pp. 175–176

    Google Scholar 

  11. B. Gevao, K.C. Jones, K. Semple, A. Craven, P. Burauel, Environ. Sci. Technol. 37, 139A (2003)

    Article  Google Scholar 

  12. Understanding the relationship between extraction technique and bioavailability. (European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 2013), http://www.ecetoc.org/wp-content/uploads/2014/08/ECETOC-TR-117-Understanding-the-relationship-between-extraction-technique-and-bioavailability.pdf. Accessed 18 Jun 2018

  13. M. Kästner, K.M. Nowak, A. Miltner, S. Trapp, A. Schäffer, Crit. Rev. Environ. Sci. Technol. 44, 2107 (2013)

    Article  Google Scholar 

  14. A. Eschenbach, Characterization of non extractable residues for their risk assessment in soil with special regard to pharmaceuticals. (Umweltbundesamt, Dessau-Rosslau, 2013), https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/eschenbach_presentation.pdf. Accessed 18 Jun 2018

  15. H.M. Bialk, A.J. Simpson, J.A. Pedersen, Environ. Sci. Technol. 39, 4463 (2005)

    Article  ADS  Google Scholar 

  16. H.M. Bialk, C. Hedman, A. Castillo, J.A. Pedersen, Environ. Sci. Technol. 15, 3593 (2007)

    Article  ADS  Google Scholar 

  17. H.M. Bialk, J.A. Pedersen, Environ. Sci. Technol. 42, 106 (2008)

    Article  ADS  Google Scholar 

  18. A. Gulkowska, M. Sander, D. Rentsch, J. Hollender, Environ. Sci. Technol. 46, 2102 (2012)

    Article  ADS  Google Scholar 

  19. A. Berns, H. Philipp, H. Lewandoswski, J.-H. Choi, M. Lamshöft, H.-D. Narres, Environ. Sci. Technol. 52, 3748 (2018)

    Article  Google Scholar 

  20. J.P. Klare, H.-J. Steinhoff, Photosynth. Res. 102, 377 (2009)

    Article  Google Scholar 

  21. J.P. Klare, H.J. Steinhoff, Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences, in Structure and Bonding, 152nd edn., ed. by C.R. Timmel, J.R. Harmer (Springer, Berlin, 2013), pp. 205–248

    Google Scholar 

  22. P. Franchi, M. Lucarini, P. Pedrielli, G.F. Pedulli, Chem. Phys. Chem. 3, 789 (2002)

    Article  Google Scholar 

  23. A.D. Steen, C. Arnosti, L. Ness, N.V. Blough, Mar. Chem. 101, 266 (2006)

    Article  Google Scholar 

  24. C. Lattao, X. Cao, Y. Li, J. Mao, K. Schmidt-Rohr, M.A. Chapell, L.F. Miller, A.L. dela Cruz, J.J. Pignatello, Environ. Sci. Technol. 46, 12814 (2012)

    Article  ADS  Google Scholar 

  25. A. Dumestre, M. McBride, P. Baveye, Environ. Sci. Technol. 34, 1259 (2000)

    Article  ADS  Google Scholar 

  26. A. Dumestre, M. Spagnuolo, R. Bladon, J. Berthelin, P. Baveye, Environ. Pollut. 143, 73 (2006)

    Article  Google Scholar 

  27. M. Spagnuolo, A.R. Jacobson, P. Baveye, Environ. Toxicol. Chem. 24, 2435 (2005)

    Article  Google Scholar 

  28. M. Matthies, K. Glinka, M. Theiling, K. Hideg, H.-J. Steinhoff, Appl. Magn. Reson. 47, 627 (2016)

    Article  Google Scholar 

  29. G. Úr, G. Gulyás-Fekete, J. Jeköc, K. Hideg, T. Kálai, Synthesis 49, 3740 (2017)

    Article  Google Scholar 

  30. A.A. Bobko, I.A. Kirilyuk, I.A. Grigor’ev, J.L. Zweier, V.V. Khramtsov, Free Rad. Biol. Med. 42, 404 (2007)

    Google Scholar 

  31. J.H. Freed, in Spin Labeling: Theory and Applications, ed. by L.J. Berliner (Academic Press, New York, 1976), pp. 53–132

  32. D.E. Budil, S. Lee, S. Saxena, J.H. Freed, J. Magn. Reson. Ser. A 120, 155 (1996)

    Article  ADS  Google Scholar 

  33. L.J. Berliner (ed.), Spin Labeling: Theory and Applications (Academic Press, New York, 1976)

    Google Scholar 

  34. A. Gulkowska, M. Sander, J. Hollender, M. Krauss, Environ. Sci. Technol. 47, 6916 (2013)

    Article  ADS  Google Scholar 

  35. J. Gao, J.A. Pedersen, J. Environ. Qual. 39, 228 (2010)

    Article  Google Scholar 

  36. M. Loos, M. Krauss, K. Fenner, Environ. Sci. Technol. 46, 9830 (2012)

    Google Scholar 

Download references

Acknowledgements

The study was partly financed by the Higher Education Institutional Excellence Programme of the Ministry of Human Capacities in Hungary, within the framework of the 20765-3/2018/FEKUTSTRAT Innovation for sustainable and healthy living and environment thematic programme of the University of Pécs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Matthies.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Dedication

We dedicate this paper to the memory of Prof. Dr. Kálmán Hideg, University of Pécs, whose pioneering research on synthesis of nitroxide spin labels and their application in chemistry, medicine and biophysics has inspired us all to continue his work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricke, A., Bondarenko, E., Úr, G. et al. Interaction Kinetics of Sulfadiazine and N-Acetyl-sulfadiazine with Soil Humic Acid: ESR Investigations with Nitroxide Spin Label. Appl Magn Reson 50, 171–185 (2019). https://doi.org/10.1007/s00723-018-1082-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1082-2

Navigation