Skip to main content
Log in

Transverse Relaxation of Scalar Coupled Protons in Magnetic Resonance of Non-Deuterated Proteins

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The transverse relaxation rates R 2 = 1/T 2 of protons can be determined by spin-echo sequences with multiple refocusing pulses using moderate radio-frequency field strengths and properly chosen inter-pulse delays so as to suppress echo modulations due to homonuclear scalar couplings. Combination with 2D heteronuclear correlation spectroscopy (HSQC) allows one to measure R 2 of arbitrary protons attached to nitrogen-15 or carbon-13 nuclei. Decays of six amide protons in the protein Ubiquitin that is nitrogen-15 enriched (but not deuterated) were measured at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.Y. Carr, E.M. Purcell, Phys. Rev. 94(3), 630–638 (1954)

    Google Scholar 

  2. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29(8), 688–691 (1958)

    Google Scholar 

  3. J. Dittmer, G. Bodenhausen, Chem. Phys. Chem. 7(4), 831–836 (2006)

    Google Scholar 

  4. J. Dittmer, G. Bodenhausen, Chem. Phys. Chem. 5(11), 1750–1754 (2004)

    Google Scholar 

  5. G. Bodenhausen, R. Freeman, G.A. Morris, J. Magn. Reson. 23(1), 171–175 (1976)

    Google Scholar 

  6. G.A. Morris, R. Freeman, J. Magn. Reson. 29(3), 433–462 (1978)

    Google Scholar 

  7. R. Freeman, Chem. Rev. (Washington, DC, US) 91(7), 1397–1412 (1991)

  8. R. Freeman, Prog. Nucl. Magn. Reson. Spectrosc. 32, 59–106 (1998)

    Google Scholar 

  9. K. Gopalakrishnan, N. Aeby, G. Bodenhausen, Chem. Phys. Chem. 8(12), 1791–1802 (2007)

    Google Scholar 

  10. N. Aeby, G. Bodenhausen, Chem. Phys. Lett. 463(4–6), 418–421 (2008)

    Google Scholar 

  11. T.F. Segawa, N. Aeby, G. Bodenhausen, Phys. Chem. Chem. Phys. 12(33), 9772–9776 (2010)

    Google Scholar 

  12. B. Baishya, T.F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 131(48), 17538–17539 (2009)

    Google Scholar 

  13. G.A. Morris, R. Freeman, J. Am. Chem. Soc. 101(3), 760–762 (1979)

    Google Scholar 

  14. T.F. Segawa, B. Baishya, G. Bodenhausen, Chem. Phys. Chem 11(15), 3343–3354 (2010)

    Google Scholar 

  15. B. Baishya, T.F. Segawa, G. Bodenhausen, J. Magn. Reson. 211(2), 240–242 (2011)

    Google Scholar 

  16. C. Barrère, P. Thureau, A. Thévand, S. Viel, Chem. Commun. (Cambridge, UK) 47(32), 9209–9211 (2011)

    Google Scholar 

  17. K. Takegoshi, K. Ogura, K. Hikichi, J. Magn. Reson. 84(3), 611–615 (1989)

    Google Scholar 

  18. T. Schulte-Herbruggen, Z.L. Madi, O.W. Sorensen, R.R. Ernst, Mol. Phys. 72(4), 847–871 (1991)

    Google Scholar 

  19. Z.L. Madi, B. Brutscher, T. Schulte-Herbruggen, R. Bruschweiler, R.R. Ernst, Chem. Phys. Lett. 268(3–4), 300–305 (1997)

    Google Scholar 

  20. C. Wang, A.G. Palmer, Magn. Reson. Chem. 41(10), 866–876 (2003)

    Google Scholar 

  21. A. Mittermaier, L.E. Kay, Science 312(5771), 224–228 (2006)

    Google Scholar 

  22. F. Ferrage, D. Cowburn, R. Ghose, J. Am. Chem. Soc. 131(17), 6048–6049 (2009)

    Google Scholar 

  23. G. Lipari, A. Szabo, J. Am. Chem. Soc. 104(17), 4546–4559 (1982)

    Google Scholar 

  24. G. Lipari, A. Szabo, J. Am. Chem. Soc. 104(17), 4559–4570 (1982)

    Google Scholar 

  25. P. Pelupessy, F. Ferrage, G. Bodenhausen, J. Chem. Phys. 126(13), 134508 (2007)

    Google Scholar 

  26. J. Dittmer, G. Bodenhausen, J. Am. Chem. Soc. 126(5), 1314–1315 (2004)

    Google Scholar 

  27. V.Y. Orekhov, D.M. Korzhnev, L.E. Kay, J. Am. Chem. Soc. 126(6), 1886–1891 (2004)

    Google Scholar 

  28. M. Verde, S. Ulzega, F. Ferrage, G. Bodenhausen, J. Chem. Phys. 130(7), 074506 (2009)

    Google Scholar 

  29. S. Ulzega, M. Verde, F. Ferrage, G. Bodenhausen, J. Chem. Phys. 131(22), 224503 (2009)

    Google Scholar 

  30. S. Ulzega, N. Salvi, T.F. Segawa, F. Ferrage, G. Bodenhausen, Chem. Phys. Chem. 12(2), 333–341 (2011)

    Google Scholar 

  31. B. Boulat, G. Bodenhausen, J. Biomol. NMR 3(3), 335–348 (1993)

    Google Scholar 

  32. R. Ishima, P.T. Wingfield, S.J. Stahl, J.D. Kaufman, D.A. Torchia, J. Am. Chem. Soc. 120(40), 10534–10542 (1998)

    Google Scholar 

  33. T.S. Ulmer, I.D. Campbell, J. Boyd, J. Magn. Reson. 157(2), 181–189 (2002)

    Google Scholar 

  34. P. Lundstrom, M. Akke, J. Biomol. NMR 32(2), 163–173 (2005)

    Google Scholar 

  35. R. Ishima, D.A. Torchia, J. Biomol. NMR 25(3), 243–248 (2003)

    Google Scholar 

  36. D.M. Korzhnev, K. Kloiber, L.E. Kay, J. Am. Chem. Soc. 126(23), 7320–7329 (2004)

    Google Scholar 

  37. L. Braunschweiler, R.R. Ernst, J. Magn. Reson. 53(3), 521–528 (1983)

    Google Scholar 

  38. A. Bax, D.G. Davis, J. Magn. Reson. 63(1), 207–213 (1985)

    Google Scholar 

  39. C. Griesinger, G. Otting, K. Wuthrich, R.R. Ernst, J. Am. Chem. Soc. 110(23), 7870–7872 (1988)

    Google Scholar 

  40. G. Bodenhausen, D.J. Ruben, Chem. Phys. Lett. 69(1), 185–189 (1980)

    Google Scholar 

  41. A.G. Palmer, J. Cavanagh, P.E. Wright, M. Rance, J. Magn. Reson. 93(1), 151–170 (1991)

    Google Scholar 

  42. L.E. Kay, P. Keifer, T. Saarinen, J. Am. Chem. Soc. 114(26), 10663–10665 (1992)

    Google Scholar 

  43. J. Schleucher, M. Schwendinger, M. Sattler, P. Schmidt, O. Schedletzky, S.J. Glaser, O.W. Sorensen, C. Griesinger, J. Biomol. NMR 4(2), 301–306 (1994)

    Google Scholar 

  44. F. Delaglio, S. Grzesiek, G.W. Vuister, G. Zhu, J. Pfeifer, A. Bax, J. Biomol. NMR 6(3), 277–293 (1995)

    Google Scholar 

  45. C. P. Slichter, Principles of magnetic resonance, Third enlarged and updated edn. (Springer, Berlin, 1996)

  46. P. Schanda, Prog. Nucl. Magn. Reson. Spectrosc. 55(3), 238–265 (2009)

    Google Scholar 

  47. D. Jeannerat, J. Magn. Reson. 186(1), 112–122 (2007)

    Google Scholar 

  48. P. Schanda, B. Brutscher, J. Am. Chem. Soc. 127(22), 8014–8015 (2005)

    Google Scholar 

  49. L. Frydman, T. Scherf, A. Lupulescu, Proc. Natl. Acad. Sci. USA 99(25), 15858–15862 (2002)

    Google Scholar 

  50. P. Pelupessy, J. Am. Chem. Soc. 125(40), 12345–12350 (2003)

    Google Scholar 

  51. H. Geen, R. Freeman, J. Magn. Reson. 93(1), 93–141 (1991)

    Google Scholar 

Download references

Acknowledgments

We thank Martial Rey for technical support and are indebted to the Swiss National Science Foundation, the Commission for Technology and Innovation, the Ecole Polytechnique Fédérale de Lausanne and the CNRS for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Bodenhausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segawa, T.F., Baishya, B. & Bodenhausen, G. Transverse Relaxation of Scalar Coupled Protons in Magnetic Resonance of Non-Deuterated Proteins. Appl Magn Reson 42, 353–361 (2012). https://doi.org/10.1007/s00723-011-0298-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0298-1

Keywords

Navigation