Skip to main content
Log in

High-pressure crystallization vs. recrystallization origin of garnet pyroxenite-eclogite within subduction related lithologies

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mafic layers displaying transition between clinopyroxenite and eclogite within peridotite from felsic granulite in the Bohemian Massif (Lower Austria) have been investigated. The mafic–ultramafic bodies shared a common granulite facies metamorphism with its hosting felsic rocks, but they still preserve evidence of eclogite facies metamorphism. The selected mafic layer for this study is represented by garnet with omphacite in the core of coarse-grained clinopyroxene, while fine-grained clinopyroxene in the matrix is diopside. In addition, garnet contains inclusions of omphacite, alkali feldspars, hydrous and other phases with halogens and/or CO2. Textural relations along with compositional zoning in garnet from the clinopyroxenite-eclogite layers favour solid-state recrystallization of the precursor minerals in the inclusions and formation of garnet and omphacite during subduction. Textures and major and trace element distribution in garnet indicate two stages of garnet growth that record eclogite facies and subsequent granulite facies overprint. The possible model explaining the textural and compositional changes of minerals is that the granulite facies overprint occurred after formation and exhumation of the eclogite facies rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ackermann L, Jelínek E, Medaris G, Ježek J, Siebel W, Strnad L (2009) Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: insights into subduction-related melt-rock reactions. Chem Geol 259:152–167

    Article  Google Scholar 

  • Anders E, Grevasse N (1989) Abundances of the elements: meteoric and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Becker H (1997) Petrological constraints on the cooling history of high-temperature garnet peridotite massifs in lower Austria. Contrib Mineral Petrol 128:272–286

    Article  Google Scholar 

  • Brueckner H, Carswell DA, Griffin WL, Medaris LG, Van Roermund H (2010) The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: an isotopic investigation. Lithos 117: 1–19

    Article  Google Scholar 

  • Carlson WD, Gale JD, Wright K (2014) Incorporation of Y and REEs in aluminosilicate garnet: energetics from atomistic simulation. Am Mineral 99:1022–1034

    Article  Google Scholar 

  • Carswell DA (1991) Variscan high P–T metamorphism and uplift history in the Moldanubian Zone of the Bohemian Massif in lower Austria. Eur J Mineral 3:323–342

    Article  Google Scholar 

  • Cháb J, Stráník Z, Eliáš M (2007) Geologická mapa České republiky 1:500.000. Česká geologická služba

  • Chakraborty S, Ganguly J (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib Mineral Petrol 111:74–86

    Article  Google Scholar 

  • Chernoff CB, Carlson WD (1999) Trace element zoning as a record of chemical disequilibrium during garnet growth. Geology 27:555–558

    Article  Google Scholar 

  • Colás V, Padrón-Navarta JA, González-Jiménez JM, Griffin WL, Fanlo I, O’Reilly SY, Gervilla F, Proenza JA, Pearson NJ, Escayola MP (2016) Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: insights from crystal-crystal partition coefficients in chromite exsolution. Am Mineral 101:1360–1372

    Article  Google Scholar 

  • Cooke RA, O’Brien PJ (2001) Resolving the relationship between high P-T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss-granulite association in the Moldanubian Zone, Austria. Lithos 58:33–54

    Article  Google Scholar 

  • Faryad SW (2009) The Kutná Hora Complex (Moldanubian zone, Bohemian Massif): a composite of crustal and mantle rocks subducted to HP/UHP conditions. Lithos 109:193–208

    Article  Google Scholar 

  • Faryad SW (2012) High-pressure polymetamorphic garnet growth in eclogites from the Mariánské Lázně Complex (Bohemian Massif). Eur J Mineral 24:483–497

    Article  Google Scholar 

  • Faryad SW, Chakraborty S (2005) Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the Eastern Alps. Contrib Mineral Petrol 150:306–318

    Article  Google Scholar 

  • Faryad SW, Fišera M (2015) Olivine-bearing symplectites in fractured garnet from eclogite, Moldanubian zone (Bohemian Massif) – a short-lived, granulite facies event. J Metamorph Geol 33:597–612

    Article  Google Scholar 

  • Faryad SW, Kachlík V (2013) New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. J Metamorph Geol 31:63–82

    Article  Google Scholar 

  • Faryad SW, Dolejš D, Machek M (2009) Garnet exsolution in pyroxene from clinopyroxenites in the Moldanubian zone: constraining the early pre-convergence history of ultramafic rocks in the Variscan orogen. J Metamorph Geol 27:655–671

    Article  Google Scholar 

  • Faryad SW, Nahodilová R, Dolejš D (2010) Incipient eclogite facies metamorphism in the Moldanubian granulites revealed by mineral inclusions in garnet. Lithos 114:54–69

    Article  Google Scholar 

  • Faryad SW, Jedlicka R, Ettinger K (2013) Subduction of lithospheric upper mantle recorded by solid phase inclusions and compositional zoning in garnet: example from the Bohemian Massif. Gondwana Res 23:944–955

    Article  Google Scholar 

  • Faryad SW, Kachlík V, Sláma J, Hoinkes G (2015) Implication of corona formation in a metatroctolite to the granulite facies overprint of HP-UHP rocks in the Moldanubian Zone (Bohemian Massif). J Metamorph Geol 33:295–310

    Article  Google Scholar 

  • Faure M, Cocherie A, Gache J, Esnault C, Guerrot C, Rossi P, Lin W, Li Q (2014) Middle carboniferous intracontinental subduction in the outer zone of the Variscan Belt (Montagne Noire Axial Zone, French Massif Central); multimethod geochronological approach of polyphase metamorphism. In: Schulmann K, Martinez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan orogeny. Geol Soc Lond Spec Publ 405:289–311

  • Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52(1–2):9–28

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc Lond Spec Publ 179:35–61

  • Garrido CJ, Bodinier JL (1999) Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt–rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J Petrol 40:729–754

    Article  Google Scholar 

  • Jedlicka R, Faryad SW, Hauzenberger C (2015) Prograde metamorphic history of UHP granulites from the Moldanubian zone (Bohemian Massif) revealed by major element and Y + REE zoning in garnets. J Petrol 56:2069–2088

    Article  Google Scholar 

  • Joanny V, van Roermund H, Lardeaux JM (1991) The clinopyroxene/plagioclase symplectite in retrograde eclogites: a potential geothermobarometer. Geol Rundsch 80:303–320

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–425

    Article  Google Scholar 

  • Konrad-Schmolke M, Zack T, O’Brien PJ, Jacob DE (2008) Combined thermodynamic and rare earth element modelling of garnet growth during subduction: examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth Planet Sci Lett 272:488–498

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Medaris LG, Wang HF, Mísař Z, Jelínek E (1990) Thermobarometry, diffusion modelling and cooling rates of crustal garnet peridotites: two examples from the Moldanubian zone of the Bohemian Massif. Lithos 25:189–202

    Article  Google Scholar 

  • Medaris LG, Beard BL, Jelínek E (2006) Mantle-derived, UHP garnet pyroxenite and eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif: a geochemical review, new P–T determinations, and tectonic interpretation. Int Geol Rev 48:765–777

    Article  Google Scholar 

  • Morishita T, Arai S, Ishida Y (2007) Trace element compositions of jadeite (+ omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: implications for fluid processes in subduction zones. Island Arc 16:40–56

    Article  Google Scholar 

  • Nakamura D, Svojtka M, Naemura K (2004) Very high-pressure (> 4 GPa) eclogite associated with the Moldanubian zone garnet peridotite (Nové Dvory, Czech Republic). J Metamorph Geol 22:593–603

    Article  Google Scholar 

  • Otamendi JE, de la Rosa JD, Patiňo Douce AE, Castro A (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30:159–162

    Article  Google Scholar 

  • Pearson DG, Davies GR, Nixon PH (1993) Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. J Petrol 34:125–172

    Article  Google Scholar 

  • Perchuk AL, Davydova VV, Burchard M, Maresch WV, Schertl H-P, Yapaskurt VO, Safonov OG (2009) Modification of mineral inclusions in garnet under high-pressure conditions: experimental simulation and application to the carbonate-silicate rocks of Kokchetav massif. Russ Geol Geophys 50:1153–1168

    Article  Google Scholar 

  • Perraki M, Faryad SW (2014) First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: implications for deep subduction and a revised geodynamic model for Variscan orogeny in the Bohemian Massif. Lithos 202–203: 157–166

    Article  Google Scholar 

  • Pyle JM, Spear FS (1999) Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Mater Res 1:1–49

    Google Scholar 

  • Racek M, Lexa O, Schulmann K, Corsini M, Štípská P, Maierová M (2017) Re evaluation of polyphase kinematic and 40Ar/39Ar cooling history of Moldanubian hot nappe at the eastern margin of the Bohemian Massif. Int J Earth Sci 106:397–420

    Article  Google Scholar 

  • Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448

    Article  Google Scholar 

  • Skubolov S, Drugova G (2003) Patterns of trace-element distribution in calcic amphiboles as a function of metamorphic grade. Can Mineral 41:383–392

    Article  Google Scholar 

  • Svojtka M, Ackermann L, Medaris LG, Hegner E, Valley JW, Hirajima T, Jelinek E, Hrstka T (2016) Petrological, geochemical and Sr-Nd-O isotopic constraints on the origin of garnet and spinel pyroxenites from the Moldanubian zone of the Bohemian Massif. J Petrol 57:897–920

    Article  Google Scholar 

  • Tribuzio R, Messiga B, Vannucci R, Bottazzi P (1996) Rare earth element redistribution during high-pressure–low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): implications for light REE mobility in subduction zones. Geology 24:711–714

    Article  Google Scholar 

  • Verma SP, Torres-Alvarado IS, Velasco-Tapia F (2003) A revised CIPW norm. Swiss Bull Mineral Petrol 83:197–216

    Google Scholar 

  • von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic Alpine basements – their place in the European Paleozoic framework. Geol Soc Am Bull 125:89–108

    Article  Google Scholar 

  • Vrána S, Frýda J (2003) Ultrahigh-pressure grossular-rich garnetite from the Moldanubian Zone, Czech Republic. Eur J Mineral 15:43–54

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (research project number 18-03160S) and by institutional project Progres Q45. We are grateful to an anonymous reviewer for detailed review that helped us to considerably improve the manuscript. We also thank M.A.T.M. Broekmans for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Faryad.

Additional information

Editorial handling: M. A.T.M. Broekmans

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faryad, S.W., Jedlicka, R., Hauzenberger, C. et al. High-pressure crystallization vs. recrystallization origin of garnet pyroxenite-eclogite within subduction related lithologies. Miner Petrol 112, 603–616 (2018). https://doi.org/10.1007/s00710-018-0557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0557-z

Keywords

Navigation