Skip to main content
Log in

The RNA polymerase II subunit NRPB2 is required for indeterminate root development, cell viability, stem cell niche maintenance, and de novo root tip regeneration in Arabidopsis

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The RNA polymerase II drives the biogenesis of coding and non-coding RNAs for gene expression. Here, we describe new roles for its second-largest subunit, NRPB2, on root organogenesis and regeneration. Down-regulation of NRPB2 activates a determinate developmental program, which correlated with a reduction in mitotic activity, cell elongation, and size of the root apical meristem. Noteworthy, nrpb2-3 mutants manifest cell death in pro-vascular cells within primary root tips of plants grown in darkness or exposed to light, which triggers the expression of the regeneration gene marker ERF115 in neighbor cells close to damage. Auxin and stem cell niche (SCN) gene expression as well as structural analysis revealed that NRPB2 maintains SCN activity through distribution of PIN transporters in root tissues. Wild-type seedlings regenerated the root tip after excision of the QC and SCN, but nrpb2-3 mutants did not rebuild the missing tissues, and this process could be genotypified using pERF115:GFP, DR5:GFP, and pWOX5:GFP reporter constructs. The levels of reactive oxygen species increased in the mutants four days after germination and strongly decreased at later times, whereas nitric oxide accumulated as the root tip differentiates. These results show the importance of the transcriptional machinery for root organogenesis, cell viability, and regenerative capacity for reconstruction of tissues and organs upon injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Papanov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Canher B, Heyman J, Savina M, Devendran A, Eekhout T, Vercauteren I, Prinsen E, Matosevich R, Xu J, Mironova M, De Veylder L (2020) Rocks in the auxin stream: wound-induced auxin accumulation and ERF115 expression synergistically drive stem cell regeneration. Proc Natl Acad Sci 117:16667–16677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Guan L, Qian P, Xu F, Wu Z, Wu Y, He K, Gou X, Li J, Hou S (2016) NRPB3, the third largest subunit of RNA polymerase II, is essential for stomata patterning and differentiation in Arabidopsis. Development 143:1600–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H-T, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colón-Carmona A, You R, Haimovitch-Gal T, Doerner P (1999) Spatio-temporal analysis of mitotic activity with a labile cyclin–GUS fusion protein. Plant J 20:503–508

    Article  PubMed  Google Scholar 

  • Cruz-Ramírez A, Díaz-Triviño S, Blilou I et al (2012) A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell divisions. Cell 150:1002–1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci U S A 107:12046–12051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durgaprasad K, Roy MV, Venugopal A, Kareem A, Raj K, Willemsen V, Mähönen AP, Scheres B, Prasad K (2019) Gradient expression of transcription factor imposes a boundary on organ regeneration potential in plants. Cell Rep 29:453–463

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci U S A 108:18506–18511

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci 106:20984–20988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Hashimura Y, Ueguchi C (2011) The Arabidopsis MERISTEM DISORGANIZATION 1 gene is required for the maintenance of stem cells through the reduction of DNA damage. Plant J 68:657–669

    Article  CAS  PubMed  Google Scholar 

  • Heyman J, Cools T, Vandenbussche F et al (2013) ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342:860–863

    Article  CAS  PubMed  Google Scholar 

  • Heyman J, Cools T, Canher B et al (2016) The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence. Nat Plants 2:1–7

    Article  CAS  Google Scholar 

  • Hoermayer L, Montesinos JC, Marhava P, Benková E, Yoshida S, Friml J (2020) Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proc Natl Acad Sci 117:15322–15331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kareem A, Durgaprasad K, Sugimoto K et al (2015) PLETHORA genes control regeneration by a two-step mechanism. Curr Biol 25:1017–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann K, Pajoro A, Angenent G (2010) Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11:830–842

    Article  CAS  PubMed  Google Scholar 

  • Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X (2011) The role of Mediator in long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin RM, Hagen G, Guilfoyle TJ (2009) Arabidopsis thaliana RNA polimerase II subunits related to yeast and human RPB5. Gene 231:41–47

    Article  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    Article  CAS  PubMed  Google Scholar 

  • Marhava P, Hoermayer L, Yoshida S, Marhavý P, Benková E, Friml J (2019) Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell 177:957–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matosevich R, Cohen I, Gil-Yarom N, Modrego A, Friedlander-Shani L, Verna C, Scarpella E, Efroni I (2020) Local auxin biosynthesis is required for root regeneration after wounding. Nat Plants 6:1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Bravo A, Raya-González J, Herera-Estrella L, López-Bucio J (2010) Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. P Cell Physiol 51:1612–1626

    Article  CAS  Google Scholar 

  • Onodera Y, Nakagawa K, Haag JR, Pikaard D, Mikami T, Ream T, Ito Y, Pikaard CS (2008) Sex-biased lethality or transmission of defective transcription machinery in Arabidopsis. Genetics 180:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci 100:2987–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, Hennig L, Groot E, Laux T (2015) Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell 33:576–588

    Article  CAS  PubMed  Google Scholar 

  • Raya-González J, Oropeza-Aburto A, López-Bucio JS, Guevara-García ÁA, De Veylder L, López-Bucio J, Herrera-Estrella L (2018) MEDIATOR18 influences Arabidopsis root architecture, represses auxin signaling and is a critical factor for cell viability in root meristems. Plant J 96:895–909

    Article  PubMed  CAS  Google Scholar 

  • Raya-González J, Ortiz-Castro R, López-Bucio J (2019) Determinate root development in the halted primary root1 mutant of Arabidopsis correlates with death of root initial cells and an enhanced auxin response. Protoplasma 256:1657–1666

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    Article  PubMed  CAS  Google Scholar 

  • Sena G, Wang X, Liu HY, Hofhuis H, Birnbaum KD (2009) Organ regeneration does not require a functional stem cell niche in plants. Nature 457:1150–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su C, Liu L, Liu H et al (2016) H2O2 regulates root system architecture by modulating the polar transport and redistribution of auxin. J Plant Biol 59:260–270

    Article  CAS  Google Scholar 

  • Tian H, Wabnik K, Niu T et al (2014) WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Mol Plant 7:277–289

    Article  CAS  PubMed  Google Scholar 

  • Truernit E, Haseloff J (2008) A simple way to identify non-viable cells within living plant tissue using confocal microscopy. Plant Methods 4:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Xiong F, Liu HH, Duan CY, Zhang BK, Wei G, Zhang Y, Li S (2019) Arabidopsis JANUS regulates embryonic pattern formation through Pol II-mediated transcription of WOX2 and PIN7. Iscience 19:1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QQ, Li Y, Fu ZY et al (2018) Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control. Plant J 95:150–167

    Article  CAS  PubMed  Google Scholar 

  • Zhao J (2007) Interplay among Nitric oxide and reactive oxygen species. Plant Signal Behav 2:544–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng B, Wang Z, Li S, Yu B, Liu JY, Chen X (2009) Intergenic transcription by RNA Polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev 23:2850–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, Scheres B (2019) A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177:942–956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank to Prof. Xuemei Chen for sharing the nrpb2-3 mutant, Prof. Lieven de Veylder for providing pERF115:GFP line and Profs. Ben Scheres and Alfredo Cruz Ramirez for donation of Arabidopsis transgenic lines. We thank Dr. Jesús Salvador López Bucio for critical reading and correction of this manuscript. This work was funded by grants from SEP-CONACYT A1-S-34768, and FORDECYT-PRONACES/376120/2020).

Author information

Authors and Affiliations

Authors

Contributions

J.R.G., A.A.R., J.V.A., and L.F.R.H. performed the experiments. J.R.G., A.A.R., and J.L.B. analyzed the data. J.R.G. and J.L.B. designed the experiments and wrote the manuscript. All authors approved the manuscript.

Corresponding authors

Correspondence to Javier Raya-González or José López-Bucio.

Ethics declarations

Competing interest statement

The authors declare no competing financial interest.

Additional information

Handling Editor: Peter Nick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 47393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raya-González, J., Ávalos-Rangel, A., Ruiz-Herrera, L.F. et al. The RNA polymerase II subunit NRPB2 is required for indeterminate root development, cell viability, stem cell niche maintenance, and de novo root tip regeneration in Arabidopsis. Protoplasma 259, 1175–1188 (2022). https://doi.org/10.1007/s00709-021-01732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01732-z

Keywords

Navigation