Skip to main content
Log in

Can exposure to neem oil affect the spermatogenesis of predator Ceraeochrysa claveri?

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Novel biological control methods and integrated pest management strategies are basic requirements for the development of sustainable agriculture. As a result, there is a growing demand for research on the use of plant extracts and natural enemies such as the green lacewing, Ceraeochrysa claveri, as natural pest control methods. Studies have shown that although natural compounds such as neem oil (Azadirachta indica) are effective as pest control strategies, they also cause sublethal effects on nontarget insects, such as C. claveri. The aim of this study was to examine the effects of neem oil on C. claveri testes. C. claveri larvae were fed Diatraea saccharalis eggs, which were pretreated with 0.5%, 1%, and 2% neem oil. Testes were collected from larvae, pupae, and adults and analyzed using light and electron (transmission and scanning) microscopy. Changes in cellular stress and possible cell death were also determined by TUNEL assay and the marker HSP-70. The results showed that neem oil affects the organization and distribution of cysts in the testes and the normal sequence of cyst development, causing a delay in spermatogenesis in the testes of treated insects. Tests for cellular stress and DNA fragmentation indicated there was no cellular alteration in the treated groups. Although neem oil does not induce cell death or changes in HSP-70 expression, this biopesticide negatively impacts the process of spermatogenesis and could decrease the perpetuation of this species in the agroecosystem, indicating that the use of neem oil in association with green lacewings as a biological control should be carefully evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzelius BA, Dallai R (1988) Spermatozoa of Megaloptera and Raphidioptera (Insecta, Neuropteroidea). J Ultra Mol Struct R 101:185–191

    Article  Google Scholar 

  • Baum JS, JPSt G, Mccall K (2005) Programmed cell death in the germline. Semin Cell Dev Biol 16:245–259

    Article  CAS  PubMed  Google Scholar 

  • Benelli G, Buttazzoni L, Canale A, D’Andrea A, Serrone PD, Delrio G, Foxi C, Mariani S, Savini G, Vadivalagan C, Murugan K, Toniolo C, Nicoletti M, Serafini M (2017) Bluetongue outbreaks: looking for effective control strategies against Culicoides vectors. Res Vet Sci 115:263–270

    Article  PubMed  Google Scholar 

  • Cagan RL (2003) Spermatogenesis: borrowing the apoptotic machinery. Curr Biol 13:600–602

    Article  CAS  Google Scholar 

  • Cherry R, Nuessly G (2010) Repellency of the biopesticide, azadirachtin, to wireworms (Coleoptera: Elateridae). Fla Entomol 93(1):52–55

    Article  CAS  Google Scholar 

  • Cloyd RA (2012) Indirect effects of pesticides on natural enemies. In: Soundararajan RP (ed) Pesticides-advances in chemical and botanical pesticides. Intech, Rijeka, pp 127–150. https://doi.org/10.5772/47244

    Chapter  Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63(6):524–554

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Landim C (2001) Organization of the cysts in bee (Hymenoptera, Apidae) testis: number of spermatozoa per cyst. Iheringia Sér Zool (91):183–189

  • da Silva CV, Schneider LCL, Conte H (2013) Toxicity and residual activity of a commercial formulation of oil from neem, Azadirachta indica A. Juss. (Meliaceae), in the embryonic development of Diatraea saccharalis F. (Lepidoptera: Crambidae). J Biofertil Biopestici 4:1–5

    CAS  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17(12):4022–4034

    Article  CAS  PubMed  Google Scholar 

  • De Freitas S, Penny ND (2001) The green lacewings (Neuroptera: Chrysopidae) of Brazilian agro-ecosystems. Proc Calif Acad Sci 52(19):245–395

    Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Dix DJ (1997a) Hsp 70 expression and function during gametogenesis. Cell Stress Chaperon 2(2):73–77

    Article  CAS  Google Scholar 

  • Dix DJ (1997b) Stress protein in reproductive toxicology. Environ Health Perspect 105(4):436–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumser JB (1980) The regulation of spermatogenesis in insects. Annu Rev Entomol 25:341–369

    Article  CAS  Google Scholar 

  • Friedländer M, Jeshtadi A, Reynolds SE (2005) The structural mechanism of trypsin-induced intrinsic motility in Manduca sexta spermatozoa in vitro. J Insect Physiol 47:245–255

    Article  Google Scholar 

  • Ghazawi NA, El-Shranoubi ED, El-Shazly MM, Abdel-Rahman KM (2007) Effects of azadirachtin on mortality rate and reproductive system of the grasshopper Heteracris littoralis Ramb. (Orthoptera: Acrididae). J Orthopt Res 16(1):57–65

    Article  Google Scholar 

  • Gonzalez-Coloma A, Reina M, Diaz CE, Fraga BM (2010) Natural product-based biopesticides for insect control. In: Mander L, Liu HW (eds) Comprehensive natural products II. Elsevier, Oxford, pp 237–268

    Chapter  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 55:45–66

    Article  CAS  Google Scholar 

  • Linton YM, Nisbet AJ, Mordue (Luntz) AJ (1997) The effects of azadirachtin on the testes of the desert locust, Schistocerca gregaria (Forskal). J Insect Physiol 43(11):1077–1084

    Article  CAS  Google Scholar 

  • Martínez LC, Plata-Rueda A, Zanuncio JC, Serrão JE (2015) Bioactivity of six plant extracts on adults of Demotispa neivai (Coleoptera: Chrysomelidae). J Insect Sci 15:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mordue (Luntz) AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39:903–924

    Article  Google Scholar 

  • Morgan ED (2009) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17:4096–4105

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay I, Siddique HR, Bajpai VK, Saxena DK, Chowdhuri DK (2006) Synthetic pyrethroid cypermethrin induced cellular damage in reproductive tissues of Drosophila melanogaster: Hsp 70 as a marker of cellular damage. Arch Environ Contam Toxicol 51:673–680

    Article  CAS  PubMed  Google Scholar 

  • Name KPO, Reis GPF, Báo SN (2007) An ultrastructural study of spermiogenesis in two species of Sitophilus (Coleoptera: Curculionidae). Biocell 31(2):229–236

    PubMed  Google Scholar 

  • Name KPO, Barros-Cordeiro KB, Filho JBG, Wolff M, Pujol-Luz JR, Báo SN (2012) Structure and ultrastructure of spermatozoa and spermiogenesis in three species of Lucilia Robineau-desvoidy, 1830 (Diptera: Calliphoridae). J Morphol 273:160–172

    Article  PubMed  Google Scholar 

  • Nasiruddin M, Mordue (Luntz) AJ (1993) The effect of azadirachtin on the midgut histology of the locusts Schistocerca gregaria and Locusta migratoria. Tissue Cell 25(6):875–884

    Article  CAS  PubMed  Google Scholar 

  • Nisbet AJ, Mordue AJ, Mordue W (1995) Detection of [22,23-3H2] dihydroazadirachtin binding sites on Schistocerca gregaria (Forskal) testes membranes. Insect Biochem Molec Biol 25(5):551–557

    Article  CAS  Google Scholar 

  • Nisbet AJ, Mordue (Luntz) AJ, Williams LM, Hannah L, Jennens L, Ley SV, Mordue W (1996) Autoradiographic localization of [22,23-3H2] dihydroazadirachtin binding sites in desert locust testes and effects of azadirachtin on sperm motility. Tissue Cell 28(6):725–729

    Article  CAS  PubMed  Google Scholar 

  • Ott GJ, Shirkey NJ, Haimo LT, Cardullo RA, Thaler CD (2015) Germ-cell hub position in a Heteropteran testis correlates with the sequence and location of spermatogenesis and production of elaborate sperm bundles. Mol Reprod Dev 82:295–304

    Article  CAS  PubMed  Google Scholar 

  • Özyurt N, Candan S, Suludere Z (2013) The morphology and histology of the male reproductive system in Dolycoris baccarum Linnaeus 1758 (Heteroptera: Pentatomidae) - light and scanning electron micoscope studies. Micron 44:101–106

    Article  PubMed  Google Scholar 

  • Paccagnini E, Mercati D, Giusti F, Conti B, Dallai R (2010) The spermatogenesis and the sperm structure of Terebrantia (Thysanoptera, Insecta). Tissue Cell 42:247–258

    Article  PubMed  Google Scholar 

  • Paoli F, Gottardo M, Dallai R, Roversi PF (2013) Morphology of the male reproductive system and sperm ultrastructure of the egg parasitoid Gryon pennsylvanicum (Ashmead) (Hymenoptera, Platygastridae). Arthropod Struct Dev 42:297–308

    Article  PubMed  Google Scholar 

  • Pappas ML, Broufas GD, Koveos DS (2011) Chrysopidae predators and their role in biological control. J Entomol 8(3):301–326

    Article  Google Scholar 

  • Pearse AGE (1972) Histochemistry theoretical and applied. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Phillips DM (1970) Insect sperm: their structure and morphogenesis. J Cell Biol 44(2):243–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polanska MA, Ciuk MA, Cymborowski B, Bebas P (2005) Germ cell death in the testis and its relation to spermatogenesis in the wax moth, Galleria mellonella (Lepidoptera: Pyralidae), effects of facultative diapause. J Exp Zool 303A:1013–1029

    Article  Google Scholar 

  • Rego LNAA, Silistino-Souza R, Azeredo-Oliveira MTV, Madi-Ravazzi L (2013) Spermatogenesis of Zaprionus indianus and Zaprionus sepsoides (Diptera, Drosophilidae): cytochemical, structural and ultrastructural characterization. Genet Mol Biol 36(1):50–60

    Article  CAS  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    Article  CAS  PubMed  Google Scholar 

  • Scudeler EL, Santos DC (2013) Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Micron 44:125–132

    Article  CAS  PubMed  Google Scholar 

  • Scudeler EL, Santos DC (2014) Side effects of neem oil on the midgut endocrine cells of the green lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae). Neotrop Entomol 43:154–160

    Article  CAS  PubMed  Google Scholar 

  • Scudeler EL, Garcia ASG, Padovani CR, Santos DC (2013) Action of neem oil (Azadirachta indica A. Juss) on cocoon spinning in Ceraeochrysa claveri (Neuroptera: Chrysopidae). Ecotoxicol Environ Saf 97:176–182

    Article  CAS  PubMed  Google Scholar 

  • Scudeler EL, Padovani CR, Santos DC (2014) Effects of neem oil (Azadirachta indica A. Juss) on the replacement of the midgut epithelium in the lacewing Ceraeochrysa claveri during larval-pupal metamorphosis. Acta Histochem 116:771–780. https://doi.org/10.1016/j.acthis.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  • Scudeler EL, Garcia ASG, Padovani CR, Pinheiro PFF, Santos DC (2016) Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri. Micron 80:96–111

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T (1988) Suppressive effects of azadirachtin on spermiogenesis of the diapausing cabbage army worm, Mamestra brassicae, in vitro. Entomol Exp Appl 46:197–199

    Article  Google Scholar 

  • Silva-Zacarin ECM, Gregorc A, Moraes RLMS (2006) In situ localization of heat-shock proteins and cell death labelling in the salivary gland of acaricide-treated honeybee larvae. Apidologie 37:507–516. https://doi.org/10.1051/apido:2006030

    Article  CAS  Google Scholar 

  • Sukontason KL, Chaiwong T, Chaisri U, Kurahashi H, Sanford M, Sukontason K (2011) Reproductive organ of blow fly, Chrysomya megacephala (Diptera: Calliphoridae): ultrastructural of testis. J Parasitol Res. https://doi.org/10.1155/2011/690863

  • Szöllösi A (1982) Relationships between germ and somatic cells in the testes of locusts and moths. In: King RC, Akai H (eds) Insect Ultrastructure. Plenum Press, New York, pp 32–60

    Chapter  Google Scholar 

  • Tayade DV (2012) Effect of phytochemical azadirachtin on the morphology and cytology of the testis follicle of the Indian grasshopper, Melanoplus sanguinipes. Biosci Discov 3(1):79–81

    Google Scholar 

  • Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review). Int J Oncol 45:18–30. https://doi.org/10.3892/ijo.2014.2399

    Article  CAS  PubMed  Google Scholar 

  • Wu YF, Wei LS, Torres MA, Zhang X, Wu SP, Chen H (2017) Morphology of the male reproductive system and spermiogenesis of Dendroctonus armandi Tsai and Li (Coleoptera: Curculionidae: Scolytinae). J Insect Sci 17(1):20 1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zizzari ZV, Lupetti P, Mencarelli C, Dallai R (2008) Sperm ultrastructure and spermiogenesis of Coniopterygidae (Neuroptera, Insecta). Arthropod Struct Dev 37:410–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Electron Microscopy Center of the Institute of Biosciences of Botucatu, UNESP.

Funding

This study was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (2012/02879-7 and 2014/15016-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Carvalho dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling Editor: Georg Krohne

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, A.S.G., Scudeler, E.L., Pinheiro, P.F.F. et al. Can exposure to neem oil affect the spermatogenesis of predator Ceraeochrysa claveri?. Protoplasma 256, 693–701 (2019). https://doi.org/10.1007/s00709-018-1329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1329-7

Keywords

Navigation