Skip to main content
Log in

Cyst geometry in the egg chambers of Calliphora erythrocephala Mg. (Diptera: Calliphoridae) ovaries

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the germarium of polytrophic ovarioles of Calliphora erythrocephala (Mg.) fly, four mitotic divisions of cystoblasts give rise to 16-cell germ-line cysts. One cell differentiates into an oocyte, while the remaining 15 cells become nurse cells. Concomitantly actin-rich ring canals are formed at the intercellular junctions. The present study considers a mutual arrangement of the ring canals formed after the second to fourth mitoses relative to the ring canal formed after the first mitotic division in different regions of the germarium and egg chambers. During the cyst formation and its movement to the posterior end of the germarium, the ring canals are displaced relative to one another, thereby giving different branching variants of the cyst. The pattern of cell interconnections becomes stable in germarium region 2b and does not change during the cyst movement along the ovariole despite the cyst polarizes and increases in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anan’ina TV, Vedernikov AE, Wasserlauf IE, Karamysheva TV, Rubtsov NB, Stegnii VN (2005) Visualization of chromosome territories in interphase nuclei of ovarian nurse cells in Calliphora erythrocephala Mg. (Diptera: Calliphoridae). Russ J Genet 41(10):1106–1112

    Article  Google Scholar 

  • Anan’ina TV, Vedernikov AE, Khodzhanov AE, Stegnii VN (2010) Development of ovarioles and nurse сell cytoskeleton in Calliphora erythrocephala Mg (Diptera: Calliphoridae). Cell Tissue Biol 4(2):192–198

    Article  Google Scholar 

  • Bier K (1963) Synthese, interzellulärer transport, und abbau von Ribonucleinsäure im ovary der Stubenfliege Musca domestica. J Cell Biol 16(6):552–575

    Google Scholar 

  • de Cuevas M, Spradling AC (1998) Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125:2781–2799

    PubMed  Google Scholar 

  • de Cuevas M, Lee JL, Spradling AC (1996) α-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 124:3959–3968

    Google Scholar 

  • Deng W, Lin H (1997) Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol 189:79–94

    Article  CAS  PubMed  Google Scholar 

  • Fuller MT, Spradling AC (2007) Male and female Drosophila germline stem cells: two versions of immortality. Science 316(5823):402–404

    Article  CAS  PubMed  Google Scholar 

  • Grieder NC, de Cuevas M, Spradling AC (2000) The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127:4253–4264

    CAS  PubMed  Google Scholar 

  • Guild GM, Connelly PS, Shaw MK, Tilney LG (1997) Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping. Cell Biol 138(4):783–797

  • Huynh JR (2006) Fusome as a cell-cell communication channel. In: Volkmann D, Barlow PW (eds) Balus˘ka F. Cell-cell channels, New York, Springer, pp 217–234

    Google Scholar 

  • Koch EA, King RC (1966) The origin and early differentiation of the egg chamber of Drosophila melanogaster. J Morphol 119:283–303

    Article  CAS  PubMed  Google Scholar 

  • Koch EA, Smith PA, King RC (1967) The division and differentiation of Drosophila cystocytes. J Morphol 121(1):55–70

    Article  CAS  PubMed  Google Scholar 

  • Kokhanenko AA, Anan’ina TV, Stegnii VN (2010) Intranuclear dynamics of chromosome 6 in nurse cells of Calliphora erythrocephala Mg. (Diptera: Calliphoridae). Russ J Genet 46(9):1045–1047

    Article  CAS  Google Scholar 

  • Kokhanenko AA, Anan’ina TV, Stegniy VN (2013) The changes in chromosome 6 spatial organization during chromatin polytenization in the Calliphora erythrocephala Mg. (Diptera: Calliphoridae) nurse cells. Protoplasma 250(1):141–149

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Spradling AC (1995) Fusome asymmetry and oocyte determination in Drosophila. Dev Genet 16:6–12

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Yue L, Spradling AC (1994) The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120:947–956

    CAS  PubMed  Google Scholar 

  • McGrail М, Hays TS (1997) The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124:2409–2419

    CAS  PubMed  Google Scholar 

  • Ong S-K, Tan C (2010) Germline cyst formation and incomplete cytokinesis during Drosophila melanogaster oogenesis. Dev Biol 337:84–98

    Article  CAS  PubMed  Google Scholar 

  • Robinson DN, Cooley L (1997) Drosophila Kelch is an oligomeric ring сanal actin organizer. J Cell Biol 138(4):799–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DN, Cant K, Cooley L (1994) Morphogenesis of Drosophila ovarian ring canals. Development 120(7):2015–2025

    CAS  PubMed  Google Scholar 

  • Roth S (2003) The origin of dorsoventral polarity in Drosophila. Philos Trans R Soc Lond B Biol Sci 358(1436):1317–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth S, Lynch JA (2009) Symmetry breaking during Drosophila oogenesis. Cold Spring Harb. Perspect Biol 1(2):a001891

    Google Scholar 

  • Spradling AC, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104

    Article  CAS  PubMed  Google Scholar 

  • Storto PD, King RC (1989) The role of polyfusomes in generating branched chains of cystocytes during Drosophila oogenesis. Dev Genet 10:70–86

    Article  CAS  PubMed  Google Scholar 

  • Terskikh VV, Vasiliev AV, Vorotelyak EA (2007) Polarization and asymmetric division of stem cells. Tsitologia 49(11):933–938

    CAS  Google Scholar 

  • Theurkauf WE, Smiley S, Wong ML, Alberts BM (1992) Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115:923–936

    CAS  PubMed  Google Scholar 

  • van Eeden F, Johnston DS (1999) The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr Opin Genet Dev 9(4):396–404

    Article  PubMed  Google Scholar 

  • Yamashita YM, Fuller MT, Jones DL (2005) Signaling in stem cell niches: lessons from the Drosophila germline. J Cell Sci 118:665–672

    Article  CAS  PubMed  Google Scholar 

  • Yue L, Spradling AC (1992) u-li tai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducing. Genes Dev 6(12В):2443–2454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Gleb Artemov for constructive discussion, critical reading, and suggestions on the manuscript. The work was supported by the Russian Foundation for Basic Research (grant no. 10-04-01059-а), partially supported by the President of Russian Federation scholarship (SP-1037.2013.4) and the Targeted Federal Grant (no. 14.B37.21.0114).

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana V. Anan’ina.

Additional information

Handling Editor: Pavel Dráber

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anan’ina, T.V., Kokhanenko, A.A. & Stegniy, V.N. Cyst geometry in the egg chambers of Calliphora erythrocephala Mg. (Diptera: Calliphoridae) ovaries. Protoplasma 251, 913–919 (2014). https://doi.org/10.1007/s00709-013-0593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0593-9

Keywords

Navigation