Abstract
Engulfment of a red or green alga by another eukaryote and subsequent reduction of the symbiont to an organelle, termed a complex plastid, is a process known as secondary endosymbiosis and is shown in a diverse group of eukaryotic organisms. Important members are heterokontophytes, haptophytes, cryptophytes, and apicomplexan parasites, all of them with complex plastids of red algal origin surrounded by four membranes. Although the evolutionary relationship between these organisms is still debated, they share common mechanisms for plastid protein import. In this review, we describe recent findings and current models on preprotein import into complex plastids with a special focus on the second outermost plastid membrane. Derived from the plasma membrane of the former endosymbiont, the evolution of protein transport across this so-called periplastidal membrane most likely represented the challenge in the transition from an endosymbiont to a host-dependent organelle. Here, remodeling and relocation of the symbiont endoplasmic reticulum-associated degradation (ERAD) machinery gave rise to a translocon complex termed symbiont-specific ERAD-like machinery and provides a fascinating insight into complex cellular evolution.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- ER:
-
Endoplasmic reticulum
- PPC:
-
Periplastidal compartment
- PPM:
-
Periplastidal membrane
- ERAD:
-
ER-associated degradation
- SELMA:
-
Symbiont-specific ERAD-like machinery
References
Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 284:33683–33691. doi:10.1074/jbc.M109.044024
Allen MD, Buchberger A, Bycroft M (2006) The PUB domain functions as a p97 binding module in human peptide N-glycanase. J Biol Chem 281:25502–25508. doi:10.1074/jbc.M601173200
Apt KE, Zaslavkaia L, Lippmeier JC, Lang M, Kilian O, Wetherbee R, Grossman AR, Kroth PG (2002) In vivo characterization of diatom multipartite plastid targeting signals. J Cell Sci 115:4061–4069. doi:10.1242/jcs.00092
Armbrust EV, Berges JA, Bowler C, Green BR (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86. doi:10.1126/science.1101156
Baek GH, Kim I, Rao H (2011) The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1104051108
Bagola K, Mehnert M, Jarosch E, Sommer T (2011) Protein dislocation from the ER. Biochim Biophys Acta 1808(3):925–936. doi:10.1016/j.bbamem.2010.06.025
Bhaya D, Grossman A (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229:400–404. doi:10.1007/BF00267462
Bodył A, Mackiewicz P, Gagat P (2012) Organelle evolution: Paulinella breaks a paradigm. Curr Biol 22(9):R304–R306. doi:10.1016/j.cub.2012.03.020
Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier U-G (2009) Protein targeting into secondary plastids. J Eukaryot Microbiol 56:9–15. doi:10.1111/j.1550-7408.2008.00370.x
Borgese N, Fasana E (2011) Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta 1808(3):937–946. doi:10.1016/j.bbamem.2010.07.010
Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856. doi:10.1074/jbc.M109.074807
Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126(2):361–373. doi:10.1016/j.cell.2006.05.043
Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46(4):347–366. doi:10.1111/j.1550-7408.1999.tb04614.x
Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358:109. doi:10.1098/rstb.2002.1194
Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492(7427):59–65. doi:10.1038/nature11681
DeRocher A, Hagen CB, Froehlich JE, Feagin JE, Parsons M (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113(22):3969–3977
Deschamps P, Moreira D (2012) Re-evaluating the green contribution to diatom genomes. Genome Biol Evol 4(7):683–688. doi:10.1093/gbe/evs053
Douglas S, Zauner S, Fraunholz M et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096. doi:10.1038/35074092
Felsner G, Sommer MS, Maier UG (2010) The physical and functional borders of transit peptide-like sequences in secondary endosymbionts. BMC Plant Biol 10:223. doi:10.1186/1471-2229-10-223
Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG (2011) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol 3:140–150. doi:10.1093/gbe/evq074
Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. doi:10.1146/annurev.biochem.78.081507.101607
Forouzan D, Ammelburg M, Hobel CF, Ströh LJ, Sessler N, Martin J, Lupas AN (2012) The archaeal proteasome is regulated by a network of AAA ATPases. J Biol Chem. doi:10.1074/jbc.M112.386458
Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299(5607):705–708. doi:10.1126/science.1078599
Funakoshi M, Sasaki T, Nishimoto T, Kobayashi H (2002) Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc Natl Acad Sci U S A 99:745–750. doi:10.1073/pnas.012585199
Gentle IE, Burri L, Lithgow T (2005) Molecular architecture and function of the Omp85 family of proteins. Mol Microbiol 58(5):1216–1225. doi:10.1111/j.1365-2958.2005.04906.x
Glaser S, van Dooren GG, Agrawal S, Brooks CF, McFadden GI, Striepen B, Higgins MK (2012) Tic22 Is an essential chaperone required for protein import into the apicoplast. J Biol Chem 287(47):39505–39512. doi:10.1074/jbc.M112.405100
Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23(12):2413–2422. doi:10.1093/molbev/msl113
Gould SB, Fan E, Hempel F, Maier UG, Klosgen RB (2007) Translocation of a phycoerythrin alpha subunit across five biological membranes. J Biol Chem 282:30295–30302. doi:10.1074/jbc.M701869200
Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517. doi:10.1146/annurev.arplant.59.032607.092915
Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4(9). doi:10.1101/cshperspect.a011403
Gruber A, Vugrinec S, Hempel F, Gould SB, Maier U-G, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530. doi:10.1007/s11103-007-9171-x
Hampton RY, Sommer T (2012) Finding the will and the way of ERAD substrate retrotranslocation. Curr Opin Cell Biol 24(4):460–466. doi:10.1016/j.ceb.2012.05.010
Hänzelmann P, Stingele J, Hofmann K, Schindelin H, Raasi S (2010) The yeast E4 ubiquitin ligase Ufd2 interacts with the ubiquitin-like domains of Rad23 and Dsk2 via a novel and distinct ubiquitin-like binding domain. J Biol Chem 285:20390–20398. doi:10.1074/jbc.M110.112532
Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790. doi:10.1093/molbev/msp079
Hempel F, Felsner G, Maier UG (2010) New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms. Mol Microbiol 76:793–801. doi:10.1111/j.1365-2958.2010.07142.x
Hirakawa Y, Burki F, Keeling PJ (2012) Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Eukaryot Cell 11(3):324–333. doi:10.1128/EC.05264-11
Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD (2008) The origin of plastids. Philos Trans R Soc Lond B Biol Sci 363(1504):2675–2685. doi:10.1098/rstb.2008.0050
Izawa T, Nagai H, Endo T, Nishikawa S (2012) Yos9p and Hrd1p mediate ER retention of misfolded proteins for ER-associated degradation. Mol Biol Cell 23(7):1283–1293. doi:10.1091/mbc.E11-08-0722
Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139. doi:10.1016/j.bbamem.2010.06.025
Kalanon M, Tonkin C, McFadden G (2009) Characterization of two putative protein translocation components in the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1146–1154. doi:10.1128/EC.00061-09
Karnataki A, DeRocher A, Coppens I, Nash C, Feagin JE, Parsons M (2007a) Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 63(6):1653–1668. doi:10.1111/j.1365-2958.2007.05619.x
Karnataki A, DeRocher AE, Coppens I, Feagin JE, Parsons M (2007b) A membrane protease is targeted to the relict plastid of Toxoplasma via an internal signal sequence. Traffic 8(11):1543–1553. doi:10.1111/j.1600-0854.2007.00637.x
Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56(1):1–8. doi:10.1111/j.1550-7408.2008.00371.x
Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64(1):null. doi:10.1146/annurev-arplant-050312-120144
Kessler F, Blobel G, Patel HA, Schnell DJ (1994) Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266(5187):1035–1039. doi:10.1126/science.7973656
Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183. doi:10.1111/j.1365-313X.2004.02294.x
Kim I, Ahn J, Liu C, Tanabe K, Apodaca J, Suzuki T, Rao H (2006) The Png1–Rad23 complex regulates glycoprotein turnover. J Cell Biol 172(2):211–219. doi:10.1083/jcb.200507149
Lang M, Apt KE, Kroth PG (1998) Protein transport into “complex” diatom plastids utilizes two different targeting signals. J Biol Chem 273:30973–30978. doi:10.1074/jbc.273.47.30973
Lemgruber L, Kudryashev M, Dekiwadia C, Riglar DT, Baum J, Stahlberg H, Ralph SA, Frischknecht F (2013) Cryo-electron tomography reveals four-membrane architecture of the Plasmodium apicoplast. Malar J 12(1):25. doi:10.1186/1475-2875-12-25
Lim PJ, Danner R, Liang J et al (2009) Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J Cell Biol 187:201–217. doi:10.1083/jcb.200903024
Madsen L, Seeger M, Semple CA, Hartmann-Petersen R (2009) New ATPase regulators–p97 goes to the PUB. Int J Biochem Cell Biol 41:2380–2388. doi:10.1016/j.biocel.2009.05.017
Maier UG, Douglas SE, Cavalier-Smith T (2000) The nucleomorph genomes of cryptophytes and chlorarachniophytes. Protist 151:103. doi:10.1078/1434-4610-00011
Martin W (2010) Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos Trans R Soc Lond B Biol Sci 365(1541):847–855. doi:10.1098/rstb.2009.0252
Martinez Benitez E, Stolz A, Wolf DH (2011) Yos9, a control protein for misfolded glycosylated and non-glycosylated proteins in ERAD. FEBS Lett 585(19):3015–3019. doi:10.1016/j.febslet.2011.08.021
McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14(13):R514–R516. doi:10.1016/j.cub.2004.06.041
Melkonian M (2001) Systematics and evolution of the algae. I. Genomics meets phylogeny. Vol 62. In: Progress in botany. Springer, Berlin, pp 340–382
Moog D, Stork S, Zauner S, Maier U-G (2011) In silico and in vivo investigations of proteins of a minimized eukaryotic cytoplasm. Genome Biol Evol 3:375–382. doi:10.1093/gbe/evr031
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324(5935):1724–1726. doi:10.1126/science.1172983
Müller M, Mentel M, van Hellemond JJ et al (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76(2):444–495. doi:10.1128/mmbr.05024-11
Mullin KA, Lim L, Ralph SA, Spurck TP, Handman E, McFadden GI (2006) Membrane transporters in the relict plastid of malaria parasites. Proc Natl Acad Sci U S A 103(25):9572–9577. doi:10.1073/pnas.0602293103
Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116(Pt 14):2867–2874. doi:10.1242/jcs.00517
Nathan JA, Tae Kim H, Ting L, Gygi SP, Goldberg AL (2013) Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J. doi:10.1038/emboj.2012.354
Neuber O, Jarosch E, Volkwein C, Walter J, Sommer T (2005) Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat Cell Biol 7:993–998. doi:10.1038/ncb1298
Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays 29:1048–1058. doi:10.1002/bies.20638
Patron NJ, Waller RF, Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357(5):1373–1382. doi:10.1016/j.jmb.2006.01.084
Pick E, Berman TS (2013) Formation of alternative proteasomes: same lady, different cap? FEBS Lett (0). doi:10.1016/j.febslet.2013.01.014
Pieuchot L, Jedd G (2012) Peroxisome assembly and functional diversity in eukaryotic microorganisms. Annu Rev Microbiol 66(1):237–263. doi:10.1146/annurev-micro-092611-150126
Ralph SA, Foth BJ, Hall N, McFadden GI (2004) Evolutionary pressures on apicoplast transit peptides. Mol Biol Evol 21(12):2183–2194. doi:10.1093/molbev/msh233
Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH (2012) Rpn1 and Rpn2 coordinate ubiquitin processing factors at the proteasome. J Biol Chem. doi:10.1074/jbc.M111.316323
Rubenstein EM, Kreft SG, Greenblatt W, Swanson R, Hochstrasser M (2012) Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. J Cell Biol 197(6):761–773. doi:10.1083/jcb.201203061
Sanchez-Pulido L, Devos D, Genevrois S, Vicente M, Valencia A (2003) POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem Sci 28(10):523–526. doi:10.1016/j.tibs.2003.08.003
Sato S (2011) The apicomplexan plastid and its evolution. Cell Mol Life Sci 68(8):1285–1296. doi:10.1007/s00018-011-0646-1
Schäfer A, Wolf D (2009) Sec61p is part of the endoplasmic reticulum-associated degradation machinery. EMBO J 28:2874–2884. doi:10.1038/emboj.2009.231
Schleiff E, Becker T (2011) Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol 12(1):48–59. doi:10.1038/nrm3027
Schnell DJ, Kessler F, Blobel G (1994) Isolation of components of the chloroplast protein import machinery. Science 266(5187):1007–1012. doi:10.1126/science.7973649
Schuberth C, Buchberger A (2005) Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat Cell Biol 7:999–1006. doi:10.1038/ncb1299
Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, Behnke MS, White MW, Striepen B (2011) A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog 7:e1002392. doi:10.1371/journal.ppat.1002392
Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090. doi:10.1126/science.1209235
Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maier U-G (2007) Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24:918–928. doi:10.1093/molbev/msm008
Sommer MS, Daum B, Gross LE, Weis BL, Mirus O, Abram L, Maier UG, Kuhlbrandt W, Schleiff E (2011) Chloroplast Omp85 proteins change orientation during evolution. Proc Natl Acad Sci U S A 108(33):13841–13846. doi:10.1073/pnas.1108626108
Spork S, Hiss JA, Mandel K, Sommer M, Kooij TWA, Chu T, Schneider G, Maier UG, Przyborski JM (2009) An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1134–1145. doi:10.1128/EC.00083-09
Stolz A, Hilt W, Buchberger A, Wolf DH (2011) Cdc48: a power machine in protein degradation. Trends Biochem Sci 36(10):515–523. doi:10.1016/j.tibs.2011.06.001
Stork S, Moog D, Przyborski JM, Wilhelmi I, Zauner S, Maier UG (2012) Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. Eukaryot Cell 11(12):1472–1481. doi:10.1128/ec.00183-12
Suzuki T, Park H, Anderson Till E, Lennarz WJ (2001) The PUB domain: a putative protein-protein interaction domain implicated in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 287:1083–1087. doi:10.1006/bbrc.2001.5688
Theissen U, Martin W (2006) The difference between organelles and endosymbionts. Curr Biol CB 16(24):R1016–R1017. doi:10.1016/j.cub.2006.11.020
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102. doi:10.1093/emboj/19.1.94
Tonkin CJ, Roos DS, McFadden GI (2006a) N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii. Mol Biochem Parasitol 150(2):192–200. doi:10.1016/j.molbiopara.2006.08.001
Tonkin CJ, Struck NS, Mullin KA, Stimmler LM, McFadden GI (2006b) Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61(3):614–630. doi:10.1111/j.1365-2958.2006.05244.x
Trempe J-F (2011) Reading the ubiquitin postal code. Curr Opin Struct Biol 21:792–801. doi:10.1016/j.sbi.2011.09.009
van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci U S A 105:13574–13579. doi:10.1073/pnas.0803862105
Waller RF, Keeling PJ, Donald RGK et al (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 95(21):12352–12357. doi:10.1073/pnas.95.21.12352
Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19(8):1794–1802. doi:10.1093/emboj/19.8.1794
Willer M, Forte GMA, Stirling CJ (2008) Sec61p is required for ERAD-L: genetic dissection of the translocation and ERAD-L functions of Sec61p using novel derivatives of CPY. J Biol Chem 283(49):33883–33888. doi:10.1074/jbc.M803054200
Woehle C, Dagan T, Martin WF, Gould SB (2011) Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol 3:1220–1230. doi:10.1093/gbe/evr100
Wunder T, Martin R, Loffelhardt W, Schleiff E, Steiner JM (2007) The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evol Biol 7:236. doi:10.1186/1471-2148-7-236
Acknowledgments
We thank Dr. Franziska Hempel and Dr. Stefan Zauner (Philipps-Universität Marburg) for valuable contributions to the manuscript. Support of the Deutsche Forschungsgemeinschaft (SFB593) and the LOEWE program of the state of Hessen (Germany) is gratefully acknowledged.
Conflict of interests
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: David Robinson
Rights and permissions
About this article
Cite this article
Stork, S., Lau, J., Moog, D. et al. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. Protoplasma 250, 1013–1023 (2013). https://doi.org/10.1007/s00709-013-0498-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00709-013-0498-7