Skip to main content
Log in

Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Actin and myosin are components of plasmodesmata, the cytoplasmic channels between plant cells, but their role in regulating these channels is unclear. Here, we investigated the role of myosin in regulating plasmodesmata in a well-studied, simple system comprising single filaments of cells which form stamen hairs in Tradescantia virginiana flowers. Effects of myosin inhibitors were assessed by analysing cell-to-cell movement of fluorescent tracers microinjected into treated cells. Incubation in the myosin inhibitor, 2,3-butanedione monoxime (BDM) or injection of anti-myosin antibodies increased cell–cell transport of fluorescent dextrans, while treatment with the myosin inhibitor N-ethylmaleimide (NEM) decreased cell–cell transport. Pretreatment with the callose synthesis inhibitor, deoxy-d-glucose (DDG), enhanced transport induced by BDM treatment or injection of myosin antibodies but did not relieve NEM-induced reduction in transport. In contrast to the myosin inhibitors, cell-to-cell transport was unaffected by treatment with the actin polymerisation inhibitor, latrunculin B, after controlling for callose synthesis with DDG. Transport was increased following azide treatment, and reduced after injection of ATP, as in previous studies. We propose that myosin detachment from actin, induced by BDM, opens T. virginiana plasmodesmata whereas the firm attachment of myosin to actin, promoted by NEM, closes them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaziz R, Dinant S, Epel BL (2001) Plasmodesmata and plant cytoskeleton. Trends Plant Sci 6:326–330

    CAS  PubMed  Google Scholar 

  • Adams W, Trafford AW, Eisner DA (1998) 2, 3-Butanedione monoxime (BDM) decreases sarcoplasmic reticulum Ca content by stimulating Ca release in isolated rat ventricular myocytes. Pflügers Archiv Eur J Physiol 436:776–781

    CAS  Google Scholar 

  • Allen TJ, Mikala G, Wu X, Dolphin AC (1998) Effects of 2,3-butanedione monoxime (BDM) on calcium channels expressed in Xenopus oocytes. J Physiol 508:1–14

    CAS  PubMed  Google Scholar 

  • Avisar A, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA (2009) A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–709

    CAS  PubMed  Google Scholar 

  • Baron-Epel O, Hernandez D, Jiang L-W, Meiners S, Schindler M (1988) Dynamic continuity of cytoplasmic and membrane compartments between plant cells. J Cell Biol 106:715–721

    CAS  PubMed  Google Scholar 

  • Blackman LM, Overall RL (1998) Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14:733–741

    CAS  Google Scholar 

  • Blanchard EM, Smith GL, Allen DG, Alpert NR (1990) The effects of 2,3-butanedione monoxime on initial heat, tension, and aequorin light output of ferret papillary muscles. Pflügers Arch 416:219–221

    CAS  PubMed  Google Scholar 

  • Bonsignore CL, Hepler PK (1985) Caffeine inhibition of cytokinesis: dynamics of cell plate formation-deformation in vivo. Protoplasma 129:28–35

    CAS  Google Scholar 

  • Bostrom TE, Walker NA (1976) Intercellular transport in plants. II. Cyclosis and the rate of intercellular transport of chloride in Chara. J Exp Bot 27:347–357

    CAS  Google Scholar 

  • Brauer D, Uknalis J, Triana R, Shachar-Hill Y, Tu S-I (1997) Effects of bafilomycin A, and metabolic inhibitors on the maintenance of vacuolar acidity in maize root hair cells. Plant Physiol 113:809–816

    CAS  PubMed  Google Scholar 

  • Byron KL, Puglisi JL, Holda JR, Eble D, Samarel AM (1996) Myosin heavy chain turnover in cultured neonatal rat heart cells: effects of [Ca2+]I and contractile activity. Amer J Physiol 271:C1447–C1456

    CAS  Google Scholar 

  • Chen JC, Kamiya N (1975) Localization of myosin in the internodal cell of Nitella as suggested by differential treatment with N-ethylmaleimide. Cell Struct Funct 1:1–9

    CAS  Google Scholar 

  • Chen S, Das P, Hari V (1994) In situ localization of ATPase activity in cells of plants infected by maize dwarf mosaic potyvirus. Arch Virol 134:433–439

    CAS  PubMed  Google Scholar 

  • Christensen NM, Faulkner CR, Oparka K (2009) Evidence for unidirectional flow through plasmodesmata. Plant Physiol 150:96–104

    CAS  PubMed  Google Scholar 

  • Cleland RE, Fujiwara T, Lucas WJ (1994) Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178:81–85

    CAS  PubMed  Google Scholar 

  • Collings DA, Asada T, Allen NS, Shibaoka H (1998) Plasma membrane-associated actin in Bright Yellow 2 tobacco cells. Plant Physiol 118:917–928

    CAS  PubMed  Google Scholar 

  • Cooke R (1993) The actomyosin engine. FASEB J 9:636–642

    Google Scholar 

  • Dale N, Lunn G, Fensom DS (1983) Rates of axial transport of 11 C and 14 C in Characean cells: faster than visible streaming? J Exp Bot 34:130–143

    CAS  Google Scholar 

  • Didhevar F, Baker DA (1986) Localization of ATPase in sink tissue of Ricinus. Ann Bot 57:823–828

    Google Scholar 

  • Ding B, Kwon M-O, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164

    Google Scholar 

  • Doberstein SK, Baines IC, Wiegand G, Korn ED, Pollard TD (1993) Inhibition of contractile vacuole function in vivo by antibodies against myosin-I. Nature 365:841–843

    CAS  PubMed  Google Scholar 

  • Eisfeld J, Mikala G, Varadi G, Schwartz A, Klockner U (1997) Inhibition of cloned human L-type cardiac calcium channels by 2, 3-butanedione monoxime does not require PKA-dependent phosphorylation sites. Biochem Biophys Res Commun 230:489–492

    CAS  PubMed  Google Scholar 

  • El-Mezgueldi M, Bagshaw CR (2008) The myosin family: biochemical and kinetic properties. In: Coluccio LM (ed) Chapter 3 Myosins: a superfamily of molecular motors. Springer, New York, pp 55–93

    Google Scholar 

  • Epel BL (1994) Plasmodesmata: composition, structure and trafficking. Plant Mol Biol 26:1343–1356

    CAS  PubMed  Google Scholar 

  • Erwee MG, Goodwin PB (1983) Characterisation of the Egeria densa planch. leaf symplast. Inhibition of the intercellular movement of fluorescent probes by group II ions. Planta 158:320–328

    CAS  Google Scholar 

  • Esseling-Ozdoba A, Houtman D, van Lammeren AAM, Eiser E, Emons AMC (2008) Hydrodynamic flow in the cytoplasm of plant cells. J Microsc 231:274–283

    CAS  PubMed  Google Scholar 

  • Faulkner CR, Blackman LM, Collings DA, Cordwell SJ, Overall RL (2009) Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur J Cell Biol 88:357–369

    CAS  PubMed  Google Scholar 

  • Ferreira G, Artigas P, Pizarro G, Brum G (1997) Butanedione monoxime promotes voltage-dependent inactivation of L type calcium channels in heart. Effects on gating currents. J Mol Cell Cardiol 29:777–787

    CAS  PubMed  Google Scholar 

  • Fleurat-Lessard P, Bouché-Pillon S, Leloup C, Lucas WJ, Serrano R, Bonnemain J-L (1995) Absence of plasma membrane H+-ATPase in plasmodesmata located in pit-fields of the young reactive pulvinus of Mimosa pudica L. Protoplasma 188:180–185

    CAS  Google Scholar 

  • Forer A, Fabian L (2005) Does 2,3-butanedione monoxime inhibit nonmuscle myosin? Protoplasma 225:1–4

    CAS  PubMed  Google Scholar 

  • Funaki K, Nagata A, Akimoto Y, Shimada K, Ito K, Yamamoto K (2004) The motility of Chara corallina myosin was inhibited reversibly by 2,3-butanedione monoxime (BDM). Plant Cell Physiol 45:1342–1345

    CAS  PubMed  Google Scholar 

  • Furukawa-Stoffer T, Byers SD, Hodges DM, Laroche A, Weselake RJ (1998) Identification of N-ethylmaleimide-sensitive and -insensitive phosphatidate phosphatase activity in microspore-derived cultures of oilseed rape. Plant Sci 131:139–147

    CAS  Google Scholar 

  • Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11:2349–2363

    CAS  PubMed  Google Scholar 

  • Golomb L, Abu-Abied M, Belausov E, Sadot (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    PubMed  Google Scholar 

  • Gordon-Weeks R, Steele SH, Leigh RA (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase. Plant Physiol 111:195–202

    CAS  PubMed  Google Scholar 

  • Grabski S, Arnoys E, Busch B, Schindler M (1998) Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol 116:279–290

    CAS  Google Scholar 

  • Grolig F, Schroder J, Sawitzky H, Lange U (1996) Partial characterization of a putative 110 kDa myosin from the green alga Chara corallina by in vitro binding of fluorescence F-actin. Cell Biol Int 20:365–373

    CAS  PubMed  Google Scholar 

  • Gyorke S, Dettbarn C, Palade P (1993) Potentiation of sarcoplasmic reticulum Ca2+ release by 2,3-butanedione monoxime in crustacean muscle. Pflügers Arch 424:39–44

    CAS  PubMed  Google Scholar 

  • Hayashi T (1960) Experimental studies on protoplasmic streaming in Characeae. Sci Pap Coll Gen Educ Univ Tokyo 10:245–282

    Google Scholar 

  • Hepler PK, Valster A, Molchan T, Vos JW (2002) Roles for kinesin and myosin during cytokinesis. Philos Trans R Soc Lond B 357:761–766

    CAS  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–335

    CAS  PubMed  Google Scholar 

  • Holmes KC (2008) Myosin structure. In: Coluccio LM (ed) Chapter 2 in Myosins: a superfamily of molecular motors. Springer, New York, pp 35–54

    Google Scholar 

  • Islam K (1989) Thylakoid protein phosphorylation and associated photosystem II fluorescence changes: a study with the ATP analogue adenosine-5-O-thiotriphosphate (ATPγS). Biochim Biophys Acta 974:267–273

    CAS  Google Scholar 

  • Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci USA 101:6291–6296

    CAS  PubMed  Google Scholar 

  • Kiehart DP, Mabuchi I, Inoué S (1982) Evidence that myosin does not contribute to force production in chromosome movement. J Cell Biol 94:165–178

    CAS  PubMed  Google Scholar 

  • Kim I, Kobayashi K, Cho E, Zambryski PC (2005) Subdomains for transport via plasmodesmata corresponding to the apical–basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 102:11945–11950

    CAS  PubMed  Google Scholar 

  • Kohama K, Kohama T, Kendrick-Jones J (1987) Effect of N-ethylmaleimide on Ca-inhibition of Physarum myosin. J Biochem 102:17–23

    CAS  PubMed  Google Scholar 

  • Kohno T, Shimmen T (1988) Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J Cell Sci 91:501–509

    Google Scholar 

  • Lang RJ, Paul RJ (1991) Effects of 2,3-butanedione monoxime on whole-cell Ca2+ channel currents in single cells of the guinea-pig taenia caeci. J Physiol 433:1–23

    CAS  PubMed  Google Scholar 

  • Lew RR (1994) Regulation of electrical coupling between Arabidopsis root hairs. Planta 195:67–73

    Google Scholar 

  • Liu J-Z, Blancaflor EB, Nelson RS (2005) The Tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol 138:1877–1895

    Google Scholar 

  • Lucas WJ, Ham B-K, Kim J-K (2009) Plasmodesmata – bridging the gap between neighboring plant cells. Trends Cell Biol 19: 495-503

    CAS  PubMed  Google Scholar 

  • Macri F, Zancani M, Petrussa E, Dell’Antone P, Vianello A (1995) Pyrophosphate and H+-pyrophosphatase maintain the vacuolar proton gradient in metabolic inhibitor-treated Acer pseudoplatanus cells. Biochim Biophys Acta 1229:323–328

    Google Scholar 

  • Malec P, Ranaldi RA, Gabrys H (1996) Light-induced chloroplast movements in Lemma trisulca. Identification of the motile system. Plant Sci 120:127–137

    CAS  Google Scholar 

  • McCurdy DW (1999) Is 2, 3-butanedione monoxime an effective inhibitor of myosin-based activities in plant cells? Protoplasma 209:120–125

    CAS  PubMed  Google Scholar 

  • Menzel D (1994) Dynamics and pharmacological perturbations of the endoplasmic reticulum in the unicellular green alga Acetabularia. Eur J Cell Biol 64:113–119

    CAS  PubMed  Google Scholar 

  • Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279:527–533

    CAS  PubMed  Google Scholar 

  • Molchan TM, Valster AH, Hepler PK (2002) Actomyosin promotes cell plate alignment and late lateral expansion in Tradescantia stamen hair cells. Planta 214:683–693

    CAS  PubMed  Google Scholar 

  • Mooseker MS, Wolenski JS, Coleman TR, Hayden SM, Cheney RE, Espreafico E, Heintzelman MB, Peterson MD (1991) Structural and functional dissection of a membrane-bound mechanoenzyme: brush border myosin I. Curr Top Membr 38:31–55

    CAS  Google Scholar 

  • Nagai R, Fukui S (1981) Differential treatment of Acetabularia with cytochalasin B and N-ethylmaleimide with special reference to their effects on cytoplasmic streaming. Protoplasma 109:79–89

    CAS  Google Scholar 

  • Oiwa K, Kawakami T, Sugi H (1993) Unitary distance of actin–myosin sliding studied using an in vitro force-movement assay system combined with ATP iontophoresis. J Biochem 114:28–32

    CAS  PubMed  Google Scholar 

  • Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    CAS  PubMed  Google Scholar 

  • Patel JR, Diffee GM, Huang XP, Moss RL (1998) Phosphorylation of myosin regulatory light chain eliminates force-dependent changes in relaxation rates in skeletal muscle. Biophys J 74:360–368

    CAS  PubMed  Google Scholar 

  • Phillips RM, Altschuld RA (1996) 2, 3-butanedione 2-monoxime (BDM) induces calcium release from canine cardiac sarcoplasmic reticulum. Biochem Biophys Res Commun 229:154–157

    CAS  PubMed  Google Scholar 

  • Prokhnevsky AI, Peremyslov VV, Dolja VA (2005) Actin cytoskeleton is involved in targeting of a viral Hsp70 homolog to the cell periphery. J Virol 79: 14421–14428

    CAS  PubMed  Google Scholar 

  • Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14:743–750

    CAS  PubMed  Google Scholar 

  • Radford JE, White RG (2001) Effects of tissue-preparation-induced callose synthesis on estimates of plasmodesma size exclusion limits. Protoplasma 216:47–55

    CAS  PubMed  Google Scholar 

  • RayChaudhuri A, Hait NC, Dasgupta S, Bhaduri TJ, Deb R, Majumder AL (1997) L-myo-inositol 1-phosphate synthase from plant sources. Plant Physiol 115:727–736

    CAS  PubMed  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluska F, Samja J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–567

    CAS  PubMed  Google Scholar 

  • Reisen D, Hanson MR (2007) Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles BMC. Plant Biol 7:6

    Google Scholar 

  • Robards AW, Kidwal P (1979) Cytochemical localization of phosphatase in differentiating secondary vascular cells. Planta 87:227–238

    Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Google Scholar 

  • Roopnarine O, Thomas DD (1996) Orientation of intermediate nucleotide states of indane dione spin-labeled myosin heads in muscle fibers. Biophys J 70:2795–2806

    CAS  PubMed  Google Scholar 

  • Safadi F, Mykles DL, Reddy ASN (1997) Partial purification and characterization of a Ca2+-dependent proteinase from Arabidopsis roots. Arch Biochem Biophys 348:143–151

    CAS  PubMed  Google Scholar 

  • Salitz A, Schmitz K (1989) Influence of microfilament and microtubule inhibitors applied by immersion and microinjection on circulation streaming in the staminal hairs of Tradescantia blossfeldiana. Protoplasma 153:37–45

    Google Scholar 

  • Sattarzadeh A, Krahmer J, Germain AD, Hanson MR (2009) A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. Molec Plant 2:1351–1358

    CAS  Google Scholar 

  • Schindler M, Jiang L (1986) Nuclear actin and myosin as control elements in nucleocytoplasmic transport. J Cell Biol 102:859–862

    CAS  PubMed  Google Scholar 

  • Schumaker KS, Gizinski MJ (1995) 1, 4-Dihydropyridine binding sites in moss plasma membranes. J Biol Chem 270:23461–23467

    CAS  PubMed  Google Scholar 

  • Seki M, Awata J-Y, Shimada K, Kashiyama T, Ito K, Yamamoto K (2003) Susceptibility of Chara myosin to SH reagents. Plant Cell Physiol 44:201–205

    CAS  PubMed  Google Scholar 

  • Shimmen T, Tazawa M (1983) Control of cytoplasmic streaming by ATP, Mg2+ and cytochalasin B in permeabilized Characeae cells. Protoplasma 115:18–24

    CAS  Google Scholar 

  • Spudich JA (1994) How molecular motors work. Nature 372: 515–518

    CAS  PubMed  Google Scholar 

  • Spudich JA (2001) The myosin swinging cross-bridge model. Nat Rev Molec Cell Biol 2: 387–392

    CAS  Google Scholar 

  • Su S, Liu Z, Chen C, Zhang Y, Wang X, Zhu L, Miao L, Wang X-C, Yuan M (2010) Cucumber Mosaic Virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22:1373–1387

    CAS  PubMed  Google Scholar 

  • Sugimoto Y, Tokunaga M, Takezawa Y, Ikebe M, Wakabayashi K (1995) Conformational changes of the myosin heads during hydrolysis of ATP as analyzed by X-ray solution scattering. Biophys J 68:29s–34s

    CAS  PubMed  Google Scholar 

  • Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747

    CAS  PubMed  Google Scholar 

  • Tirlapur UK, König K (1999) Near-infrared femtosecond laser pulses as a novel non- invasive means for dye-permeation and 3D imaging of localised dye-coupling in the Arabidopsis root meristem. Plant J 20:363–370

    CAS  PubMed  Google Scholar 

  • Tominga T, Wayne R, Tung HYL, Tazawa M (1987) Phosphorylation-dephosphorylation is involved in Ca2+-controlled cytoplasmic streaming of characean cells. Protoplasma 136:161–169

    Google Scholar 

  • Tucker EB (1982) Translocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probes. Protoplasma 113:193–201

    CAS  Google Scholar 

  • Tucker EB (1987) Cytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpurea. Protoplasma 137:140–144

    Google Scholar 

  • Tucker EB (1988) Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 174:358–363

    CAS  Google Scholar 

  • Tucker EB (1990) Calcium-loaded 1, 2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    CAS  Google Scholar 

  • Tucker EB (1993) Azide treatment enhances cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Protoplasma 174:45–49

    CAS  Google Scholar 

  • Tucker EB, Boss WF (1996) Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol 111:459–467

    CAS  PubMed  Google Scholar 

  • Tucker EB, Tucker JE (1993) Cell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpurea. Protoplasma 174:36–44

    Google Scholar 

  • Tucker JE, Mauzerall D, Tucker EB (1989) Symplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and includes loss to the vacuole. Plant Physiol 90:1143–1147

    CAS  PubMed  Google Scholar 

  • Turner A, Wells B, Roberts K (1994) Plasmodesmata of maize root tips: structure and composition. J Cell Science 107:3351–3361

    CAS  PubMed  Google Scholar 

  • Uyeda TQ, Abramson PD, Spudich JA (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA 93:4459–4464

    CAS  PubMed  Google Scholar 

  • Verrucchia F, Hervé JC (1997) Reversible blockade of gap junctional communication by 2,3-butanedione monoxime in rat cardiac myocytes. Amer J Physiol 272:C875–C885

    Google Scholar 

  • Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545

    CAS  PubMed  Google Scholar 

  • Vincente JAF, Vale MGP (1994) Proton transport by a fraction of endoplasmic reticulum and golgi membranes of corn roots: comparison with the plasma membrane and tonoplast H+ pumps. Plant Sci 96:55–68

    Google Scholar 

  • Volkmann D, Mori T, Tirlapur UK, Konig K, Fujiwara T, Kendrick-Jones J, Baluska F (2003) Unconventional myosins of the plant-specific class VIII: endocytosis, cytokinesis, plasmodesmata/pit-fields, and cell-to-cell coupling. Cell Biol Int 27:289–291

    CAS  PubMed  Google Scholar 

  • Walter N, Holweg CL (2008) Head-neck domain of Arabidopsis myosin XI, MYA2, fused with GFP produces F-actin patterns that coincide with fast organelle streaming in different plant cells. BMC Plant Biol 8:74

    PubMed  Google Scholar 

  • Wang ZY, Ramage RT, Portis AR Jr (1993) Mg2+ and ATP or adenosine 5′-[γ-thio]-triphosphate (ATPγS) enhances intrinsic fluorescence and induces aggregation which increases the activity of spinach rubisco activase. Biochim Biophys Acta 1202:47–55

    CAS  PubMed  Google Scholar 

  • Watanabe M (1993) Effects of 2, 3-butanedione monoxime on smooth-muscle contraction of guinea-pig portal vein. Pflugers Arch 425:462–468

    CAS  PubMed  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    CAS  Google Scholar 

  • Williamson RE (1975) Cytoplasmic streaming in Chara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci 17:655–668

    CAS  PubMed  Google Scholar 

  • Williamson RE (1992) Cytoplasmic streaming in Characean algae: mechanism, regulation by Ca2+, and organization. In: Melkonian M (ed) Algal cell motility. Chapman, Hall, New York, pp 73–98

    Google Scholar 

  • Xiao YF, McArdle JJ (1995) Effects of 2,3-butanedione monoxime on blood pressure, myocardial Ca2+ currents and action potentials of rats. Am J Hypertens 8:1232–1240

    CAS  PubMed  Google Scholar 

  • Xiong F, Gaon Y, Song P (1998) A long-lasting photorespiration in CO2-free air, measured as the postirradiation CO2 burst, indicates mobilization of storage photosynthates. Photosynthetica 35:107–119

    Google Scholar 

  • Yamamoto K (2008) Plant myosins VIII, XI, and XIII. In: Coluccio LM (ed) Chapter 12 in Myosins: a superfamily of molecular motors. Springer, New York, pp 375–390

    Google Scholar 

  • Zawadzki T, Fensom DS (1986) Transnodal transport of 14 C in Nitella flexilis. I. Tandem cells without applied pressure gradients. J Exp Bot 37:1341–1352

    Google Scholar 

  • Zhang D, Wadsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87:8820–8824

    CAS  PubMed  Google Scholar 

  • Zhen R-G, Kim EJ, Rea PA (1994) Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J Biol Chem 269:23342–23350

    CAS  PubMed  Google Scholar 

  • Zhu Y, Ideka SR (1993) 2,3-Butanedione monoxime blockade of Ca2+ currents in adult rat sympathetic neurons does not involve ‘chemical phosphatase’ activity. Neurosci Lett 155:24–28

    CAS  PubMed  Google Scholar 

  • Zurek B, Sanger JM, Sanger JW, Jockusch BM (1990) Differential effects of myosin-antibody complexes on contractile rings and circumferential belts in epitheloid cells. J Cell Sci 97:297–306

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Australian Research Council (RW) and by an Australian Postgraduate Student Award (JR).

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary G. White.

Additional information

Handling Editor: Karl Oparka

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Tradescantia virginiana stamen hairs stained for 2 h with 2 μm ER-tracker white (Invitrogen) in buffer (0.5 mM HEPES, 0.1 mM KCl, 0.1 mM CaCl2, 0.1 mM MgCl2, 0.5 mM NaCl, pH 7) and observed under UV fluorescence. In a and c, fluorescent compartments were observed around the nucleus (n) and at the cell periphery b, d Corresponding brightfield images. a, b and c, d are at different planes of focus. (GIF 31 kb)

High resolution image (EPS 1999 kb)

Supplementary Fig. 2a

Movies showing a cytoplasmic streaming in freshly isolated Tradescantia virginiana stamen hair cells in buffer and b slow streaming after incubation in 30 mM BDM in buffer for 30 min total time elapsed = 1 min. (MP4 215 kb)

Supplementary Fig. 2b

(MP4 194 kb)

Supplementary Fig. 3a

Movies showing a cytoplasmic streaming in freshly isolated Tradescantia virginiana stamen hair cells in buffer and b absence of streaming after incubation in 1 mM NEM in buffer for 8 min total time elapsed = 1 min. (MP4 219 kb)

Supplementary Fig. 3b

(MP4 192 kb)

Supplementary Fig. 4a

Movies showing a cytoplasmic streaming in freshly isolated Tradescantia virginiana stamen hair cells in buffer and b absence of streaming and breakdown of cytoplasmic strands after incubation in 1 mM latrunculin B in buffer for 45 min total time elapsed = 1 min. (MP4 212 kb)

Supplementary Fig. 4b

(MP4 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radford, J.E., White, R.G. Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma 248, 205–216 (2011). https://doi.org/10.1007/s00709-010-0244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0244-3

Keywords

Navigation