Skip to main content
Log in

Geminivirus C4 protein alters Arabidopsis development

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The C4 protein of beet curly top virus [BCTV-B (US:Log:76)] induces hyperplasia in infected phloem tissue and tumorigenic growths in transgenic plants. The protein offers an excellent model for studying cell cycle control, cell differentiation, and plant development. To investigate the role of the C4 protein in plant development, transgenic Arabidopsis thaliana plants were generated in which the C4 transgene was expressed under the control of an inducible promoter. A detailed analysis of the developmental changes that occur in cotyledons and hypocotyls of seedlings expressing the C4 transgene showed extensive cell division in all tissues types examined, radically altered tissue layer organization, and the absence of a clearly defined vascular system. Induced seedlings failed to develop true leaves, lateral roots, and shoot and root apical meristems, as well as vascular tissue. Specialized epidermis structures, such as stomata and root hairs, were either absent or developmentally impaired in seedlings that expressed C4 protein. Exogenous application of brassinosteroid and abscisic acid weakly rescued the C4-induced phenotype, while induced seedlings were hypersensitive to gibberellic acid and kinetin. These results indicate that ectopic expression of the BCTV C4 protein in A. thaliana drastically alters plant development, possibly through the disruption of multiple hormonal pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ach RA, Durfee T, Miller AB, Taranto P, Hanley-Bowdoin L, Zambryski PC, Gruissem W (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol 17:5077–5086

    CAS  PubMed  Google Scholar 

  • Arguello-Astorga G, Lopez-Ochoa L, Kong LJ, Orozco BM, Settlage SB, Hanley-Bowdoin L (2004) A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J Virol 78:4817–4826

    Article  CAS  PubMed  Google Scholar 

  • Ascencio-Ibañez JT, Sozzani R, Lee T-J, Chu T-M, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed  Google Scholar 

  • Bae H, Herman E, Sicher R (2005) Exogenous trehalose promotes non-structural carbohydrate accumulation and induces chemical detoxification and stress response proteins in Arabidopsis thaliana grown in liquid culture. Plant Sci 168:1293–1301

    Article  CAS  Google Scholar 

  • Bai MY, Zhang LY, Gampala SS, Zhue SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA 104:13839–13844

    Article  CAS  PubMed  Google Scholar 

  • Bass HW, Nagar S, Hanley-Bowdoin L, Robertson D (2000) Chromosome condensation induced by geminivirus infection of mature plant cells. J Cell Sci 113:1149–1160

    CAS  PubMed  Google Scholar 

  • Belkhadir Y, Chory J (2006) Brassinosteroid signalling: a paradigm for steroid hormone signalling from the cell surface. Science 314:1410–1411

    Article  CAS  PubMed  Google Scholar 

  • Bergmann DC, Sack FD (2007) Stomatal development. Annu Rev Plant Biol 58:163–181

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Markham PG (2000) Cotton leaf curl virus disease. Virus Res 71:151–159

    Article  CAS  PubMed  Google Scholar 

  • Charrier B, Champion A, Henry Y, Kreis M (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase–polymerase chain reaction. Plant Physiol 130:577–590

    Article  CAS  PubMed  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA 102:10381–10386

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Coello P, Rodriguez R, Garcia E, Vazquezramos JM (1992) A DNA-polymerase from maize axes—its purification and possible role. Plant Mol Biol 20:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Vanneste S, Inze D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887

    Article  CAS  PubMed  Google Scholar 

  • Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodaton gene-product of tobacco mosaic virus potentiates virus movement. Science 237:389–394

    Article  CAS  PubMed  Google Scholar 

  • Desvoyes B, Ramirez-Parra E, Xie Q, Chua NH, Gutierrez C (2006) Cell type specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol 140:67–80

    Article  CAS  PubMed  Google Scholar 

  • Dornelas MC, Lejeune B, Dron M, Martin K (1998) The Arabidopsis SHAGGY-related protein kinase (ASK) gene family: structure, organization and evolution. Gene 212:249–257

    Article  CAS  PubMed  Google Scholar 

  • Esau K (1976) Hyperplastic phloem and its plastids in spinach infected with the curly top virus. Ann Botany 40:637–644

    Google Scholar 

  • Esau K, Hoefert LL (1978) Hyperplastic phloem in sugar beet leaves infected with the beet curly top virus. Am J Bot 65:772–783

    Article  Google Scholar 

  • Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2006) Virus taxonomy: eighth report of the international committee on taxonomy of viruses. Elsevier, San Diego

    Google Scholar 

  • Felsani A, Mileo AM, Paggi MG (2006) Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25:5277–5285

    Article  CAS  PubMed  Google Scholar 

  • Fondong VN, Reddy RV, Lu C, Hankoua B, Felton C, Czymmek K, Achenjang F (2007) The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. Mol Plant Microbe Interact 20:380–391

    Article  CAS  PubMed  Google Scholar 

  • Fontes EPB, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18:2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Gampala SS, Kim TW, He JX (2007) An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell 13:177–189

    Article  CAS  PubMed  Google Scholar 

  • Gendron JM, Wang ZY (2007) Multiple mechanisms modulate brassinosteroid signalling. Curr Opin Plant Biol 10:436–441

    Article  CAS  PubMed  Google Scholar 

  • Gendron JM, Haque A, Gendron N, Chang T, Asami T, Wang ZY (2008) Chemical genetic dissection of brassinosteroid–ethylene interaction. Mol Plant 1:368–379

    Article  CAS  PubMed  Google Scholar 

  • Grafi G, Burnett RJ, Helentjaris T, Larkins BA, DeCaprio JA, Sellers WR, Kaelin WG (1996) A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc Natl Acad Sci USA 93:8962–8967

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez C (2000) DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J 19:792–799

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez C (2002) Strategies for geminivirus DNA replication and cell cycle interference. Physiol Mol Plant Pathol 60:219–230

    Article  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Robertson D (2004) Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol Plant Pathol 5:149–156

    Article  CAS  Google Scholar 

  • Hardtke CS (2007) Transcriptional auxin-brassinosteroid crosstalk: who's talking? Bioessays 29:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • He JX, Gendron JM, Yang Y, Li J, Wang Z-Y (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signalling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185–10190

    Article  CAS  PubMed  Google Scholar 

  • He JX, Gendron MJ, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  CAS  PubMed  Google Scholar 

  • Horns T, Jeske H (1991) Localization of abutilon mosaic-virus (AbMV) DNA within leaf tissue by in situ hybridization. Virology 181:580–588

    Article  CAS  PubMed  Google Scholar 

  • Horváth GV, Pettkó-Szandtner A, Nikovics K, Bilgin M, Boulton M, Davies JW, Gutiérrez C, Dudits D (1998) Prediction of functional regions of the maize streak virus replication-associated proteins by protein-protein interaction analysis. Plant Mol Biol 38:699–712

    Article  PubMed  Google Scholar 

  • Jonak C, Hirt H (2002) Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci 7:457–461

    Article  CAS  PubMed  Google Scholar 

  • Kim T-W, Guan S, Sun Y, Deng Z, Tang W, Shang J-X, Sun Y, Burlingame AL, Wang Z-Y (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260

    Article  CAS  PubMed  Google Scholar 

  • Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W, Robertson D, Hanley-Bowdoin L (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495

    Article  CAS  PubMed  Google Scholar 

  • Latham JR, Saunders K, Pinner MS, Stanley J (1997) Induction of plant cell division by beet curly top virus gene C4. Plant J 11:1273–1283

    Article  CAS  Google Scholar 

  • Lee S, Stenger DC, Bisaro DM, Davis KR (1994) Identification of loci in Arabidopsis that confer resistance to Geminivirus infection. Plant J 6:525–535

    Google Scholar 

  • Li J, Jin H (2007) Regulation of brassinosteroid signalling. Trends Plant Sci 12:37–41

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Saunders K, Thomas CL, Davies JW, Stanley J (1999) Bean yellow dwarf virus RepA, but not Rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif. Virology 256:270–279

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lucy AP, Boulton MI, Davies JW, Maule AJ (1996) Tissue specificity of Zea mays infection by maize streak virus. Mol Plant Microbe Interact 9:22–31

    CAS  Google Scholar 

  • Mariano AC, Andrade MO, Santos AA, Carolino SMB, Oliveira ML, Baracat-Pereira MC, Brommonshenkel SH, Fontes EPB (2004) Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology 318:24–31

    Article  CAS  PubMed  Google Scholar 

  • Martinez MC, Jorgensen J, Lawton MA, Lamb CJ, Doerner PW (1992) Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc Natl Acad Sci USA 89:7360–7364

    Article  CAS  PubMed  Google Scholar 

  • Menges M, de Jager SM, Gruissem W, Murray JAH (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41:546–566

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  CAS  PubMed  Google Scholar 

  • Morra MR, Petty ITD (2000) Tissue specificity of geminivirus infections is genetically determined. Plant Cell 12:2259–2270

    Article  CAS  PubMed  Google Scholar 

  • Nagar S, Pedersen TJ, Carrick KM, Hanley-Bowdoin L, Robertson D (1995) A geminivirus induces expression of a host DNA-synthesis protein in terminally differentiated plant-cells. Plant Cell 7:705–719

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA9, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signalling. Plant Physiol 133:1843–1853

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Hirano K, Nakashima S, Banno H, Nishihama R, Machida Y (1998) The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in a tobacco plant: correlation with cell proliferation. Plant Cell Physiol 39:690–700

    CAS  PubMed  Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • Park J, Hwang H, Shim H, Im K, Auh CK, Lee S, Davis KR (2004) Altered cell shapes, hyperplasia, and secondary growth in Arabidopsis caused by beet curly top geminivirus infection. Mol Cells 17:117–124

    CAS  PubMed  Google Scholar 

  • Park JA, Ahn JW, Kim YK, Kim SJ, Kim JK, Kim WT, Pai HS (2005) Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J 42:153–163

    Article  CAS  PubMed  Google Scholar 

  • Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J 27:357–366

    Article  CAS  PubMed  Google Scholar 

  • Piroux N, Saunders K, Page A, Stanley J (2007) Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKn, a component of the brassinosteroid signalling pathway. Virology 362:428–440

    Article  CAS  PubMed  Google Scholar 

  • Rushing AE, Sunter G, Gardiner WE, Dute RR, Bisaro DM (1987) Ultrastructural aspects of tomato golden mosaic-virus infection in tobacco. Phytopathology 77:1231–1236

    Article  Google Scholar 

  • Rybel BD, Audenaert D, Vert G, Rozhon W, Mayerhofer J, Peelman F, Coutuer S, Denayer T, Jansen L, Nguyen L, Vanhoutte I, Beemster GTS, Vleminckx K, Jonak C, Chory J, Inzé D, Russinova E, Beeckman T (2009) Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signalling. Chem Biol 16:594–603

    Article  PubMed  Google Scholar 

  • Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signalling. Plant Cell 19:2749–2762

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanderfoot AA, Lazarowitz SG (1996) Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol 6:353–358

    Article  CAS  PubMed  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Saunders K, Wege C, Veluthambi K, Jeske H, Stanley J (2001) The distinct disease phenotypes of the common and yellow vein strains of tomato golden mosaic virus are determined by nucleotide differences in the 3′-terminal region of the gene encoding the movement protein. J Gen Virol 82:45–51

    CAS  PubMed  Google Scholar 

  • Seal SE, vandenBosch F, Jeger MJ (2006) Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25:23–46

    Article  Google Scholar 

  • Serna L (2005) Epidermal cell patterning and differentiation throughout the apical–basal axis of the seedling. J Exp Bot 56:1983–1989

    Article  CAS  PubMed  Google Scholar 

  • Settlage SB, Miller AB, Gruissem W, Hanley-Bowdoin L (2001) Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator. Virology 279:570–576

    Article  CAS  PubMed  Google Scholar 

  • Staiger C, Doonan J (1993) Cell division in plants. Curr Opin Cell Biol 5:226–231

    Article  CAS  PubMed  Google Scholar 

  • Stanley J, Latham JR (1992) A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology 190:506–509

    Article  CAS  PubMed  Google Scholar 

  • Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci 8:231–237

    Article  CAS  PubMed  Google Scholar 

  • Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Malathi VG (2003) Emerging geminivirus problem: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  • Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441:96–100

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc Natl Acad Sci USA 105:9829–9834

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signalling, from the plasma membrane. Science 313:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Gilbertson RL, Lucas WJ (1996) Spatial and temporal distribution of bean dwarf mosaic geminivirus in Phaseolus vulgaris and Nicotiana benthamiana. Phytopathology 86:1204–1214

    Article  Google Scholar 

  • Wege C, Saunders K, Stanley J, Jeske H (2001) Comparative analysis of tissue tropism of bipartite geminiviruses. J Phytopath 149:359–368

    Article  Google Scholar 

  • Xie Q, Sanz-Burgos AP, Hannon GJ, Gutierrez C (1996) Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J 15:4900–4908

    CAS  PubMed  Google Scholar 

  • Yan Z, Zhao J, Peng P, Chihara RK, Li J (2009) BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signalling. Plant Physiol 150:710–721

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcriptional factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signalling outputs of brassinosteroids are regulated by abscisic acid signalling. Proc Natl Acad Sci USA 106:4543–4548

    Article  CAS  PubMed  Google Scholar 

  • Zhou G-K, Kubo M, Zhong R, Demura T, Ye Z-H (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Garry Sunter (University of Texas, San Antonio, TX, USA) for providing the plasmid pUC18-BCTV dimer, Roger Innis (Indiana University, Bloomington, IN, USA) for Arabidopsis thaliana ecotype Sei-O seeds, Nam-Hai Chua for the pER10 plasmid, and Richard Meagher (University of Georgia, Athens, GA, USA) for control qRT-PCR ACT2 primers. We thank Beth Richardson and John Shields for assistance with tissue sectioning and SEM, respectively. We also thank Zheng-Hua Ye and John Sherwood for reviewing the manuscript. This work was supported by funding from the Georgia Agricultural Experiment Station.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Michael Deom.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplemental Table 1

Primer pairs used for cloning and qRT-PCR analysis (DOC 51 kb)

Fig. S1

Expression of C4 mRNA and protein correlates with inducer concentrations and time following induction. a Northern blot analysis on total RNA extracted from seedlings germinated in liquid for 7 days prior to induction with varying concentrations of β-estradiol (0 to 10 μM) and collected 24 hpi (upper panel). Transgenic lines IPC4-28, IPC4nt-12, and IPV-20 express wild-type C4, a nontranslatable version of C4 (C4nt), and empty vector (V) from a β-estradiol inducible promoter (IP), respectively. Control lines CPC4nt-6 and CPV-25 express C4nt and empty vector from the constitutive 35S promoter (CP), respectively. rRNA loading control is indicated in the lower panel. b Western blot analysis of total protein extracted from seedlings treated as described in a. Nonspecific protein band used as loading control is indicated in the lower panel. c Western blot analysis of total protein extracted from seedlings germinated and grown in liquid for 7 days prior to induction with 10 μM β-estradiol and collected at various times after induction (upper panel). Nonspecific protein band used as loading control indicated in the lower panel. Protein molecular mass markers and C4 are indicated in b and c. β-est. β-estradiol (GIF 88 kb)

High Resolution Image (TIFF 92838 kb)

Fig. S2

In planta expression of C4 leads to loss of RAM organization. Longitudinal sections of RAMs of IPC4nt-12 seedlings germinated on media with 1.0 μM β-estradiol (AC) and IPC4-28 seedlings germinated on media without inducer (DF) and on media with 1.0 μM inducer (GI), analyzed by light microscopy. Samples were taken from seedlings at 2, 3, and 8 dpg. β-est. β-estradiol, c columella; black arrowhead, quiescent center. Scale bars = 50 μm (GIF 195 kb)

High Resolution Image (TIFF 98642 kb)

Fig. S3

Quantitative real-time PCR analysis of CYCA1;1, CYCB1;4, and CDKB2;2 mitotic markers. IPC4-28 seedlings were germinated for 7 days in liquid media then treated with 0.0 or 10 μM β-estradiol. Seedlings were collected at 3, 6, 24, 48, and 96 hpi, and total RNA was extracted and assayed by qRT-PCR. The relative expression levels of each gene are indicated. Relative transcript abundance for each gene was normalized to ACT2. Data represent means ± SD for three independent biological replicates (GIF 65 kb)

High Resolution Image (TIFF 5573 kb)

Fig. S4

Effects of hormone treatments on C4-induced phenotype. Seedlings were germinated on solid media (AD), on solid induction media (EH), on solid induction media amended with 0.5 μM ΑΒΑ (IL), 1 μM GA3 (MP), or 1 μM IAA (QT). Induction media contained 10 μM β-est. Seedlings were observed at 6 and 15 dpg (AP) or 6 and 12 dpg (QT). Arrowhead, root; β-est. β-estradiol, ABA abscisic acid, GA 3 gibberellic acid, IAA the indole-3-acetic acid. Scale bar = 1,000 μm (GIF 355 kb)

High Resolution Image (TIFF 50686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills-Lujan, K., Deom, C.M. Geminivirus C4 protein alters Arabidopsis development. Protoplasma 239, 95–110 (2010). https://doi.org/10.1007/s00709-009-0086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-009-0086-z

Keywords

Navigation