Skip to main content
Log in

Image force in cubic piezoelectric quasicrystal half-space and bi-material composite space

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is concerned with the image force in cubic piezoelectric quasicrystal semi-infinite space and infinite space containing two dissimilar quasicrystal half-spaces. On the basis of the Stroh formalism, the expressions of the Green’s function for generalized displacement and stress under multi-physical loading conditions are obtained exactly. Also, the image force applied to a generalized line dislocation with different boundary conditions is taken into account. The image force for the traction-free and electrically open surface always attracts dislocation to the boundary, while that for clamped and electrically closed surface shows the opposite tendency. Illustrative examples, such as generalized line force and line charge, are given to present the mechanical behaviors of quasicrystals under different loading conditions and investigate the influences of material parameters and dislocation scheme on image force. The results show that generalized line force has little effect on atomic configurations, and image force F is the strongest when phonon and phason dislocations interact together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data generated or analyzed used to support the findings of this study are included within the article.

References

  1. Barnett, D.M., Lothe, J.: An image force theorem for dislocations in anisotropic bicrystals. J. Phys. F 4(10), 1618–1635 (1974)

    Google Scholar 

  2. Asaro, R.J.: Image force theorem for a dislocation near a crack in an anisotropic elastic medium. J. Phys. F 5(12), 2249–2255 (1975)

    Google Scholar 

  3. Ting, T.C.T., Barnett, D.M.: Image force on line dislocations in anisotropic elastic half-spaces with a fixed boundary. Int. J. Solids Struct. 30(3), 313–323 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Lubarda, V.A.: Image force on a straight dislocation emitted from a cylindrical void. Int. J. Solids Struct. 48(5), 648–660 (2011)

    MATH  Google Scholar 

  5. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 195l–1953 (1984)

    Google Scholar 

  6. Jaric, M.V., Nelson, D.R.: Introduction to quasicrystals. Phys. Today 43(3), 77–79 (1990)

    Google Scholar 

  7. Guo, X.P., Chen, J.F., Yu, H.L., Liao, H.L., Coddet, C.: A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surf. Coat. Tech. 268, 94–98 (2015)

    Google Scholar 

  8. Zhu, S., Yu, H.J., Hao, L.L., Wang, B., Yang, Y.N., Huang, K., Li, Z.X.: Exploring the dynamic fracture performance of epoxy/cement based piezoelectric composites with complex interfaces. Compos. Struct. 305, 1–19 (2023)

    Google Scholar 

  9. Zhu, S., Yu, H.J., Wu, X.R., Hao, L.L., Shen, Z., Wang, J.S., Guo, L.C.: Dynamic fracture analysis in nonhomogeneous piezoelectric materials with a new domain-independent interaction integral. Theor. Appl. Fract. Mech. 122, 1–17 (2022)

    Google Scholar 

  10. Zhu, S., Liu, H.T.: Finite element analysis of the three-dimensional crack and defects in piezoelectric materials under the electro-mechanical coupling field. J. Intel. Mat. Syst. Str. 32(15), 1662–1677 (2021)

    Google Scholar 

  11. Wang, T.C.: Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int. J. Solids Struct. 37(42), 6031–6049 (2000)

    MATH  Google Scholar 

  12. Chen, C.D.: On the singularities of the thermo-electro-elastic fields near the apex of a piezoelectric bonded wedge. Int. J. Solids. Struct. 43(5), 957–981 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Yu, H.J., Wu, L.Z., Guo, L.C., Ma, J.W.: A domain-independent interaction integral for fracture analysis of nonhomogeneous piezoelectric materials. Int. J. Solids Struct. 49, 3301–3315 (2012)

    Google Scholar 

  14. Fan, C.Y., Yuan, Y.P., Pan, Y.B., Zhao, M.H.: Analysis of cracks in one-dimensional hexagonal quasicrystals with the heat effect. Int. J. Solids Struct. 120, 146–156 (2017)

    Google Scholar 

  15. Guo, J.H., Yu, J., Xing, Y.M.: Anti-plane analysis on a finite crack in a one-dimensional hexagonal quasicrystal strip. Mech. Res. Commun. 52, 40–45 (2013)

    Google Scholar 

  16. Zhou, Y.B., Li, X.F.: A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals. Appl. Math. Model. 65, 148–163 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Li, L.H., Cui, X.W., Guo, J.H.: Interaction between a screw dislocation and an elliptical hole with two asymmetrical cracks in a one-dimensional hexagonal quasicrystal with piezoelectric effect. Appl. Math. Mech. Engl. Ed. 41(6), 899–908 (2020)

    MathSciNet  Google Scholar 

  18. Mu, X., Xu, W.S., Zhu, Z.W., Zhang, L.L., Gao, Y.: Multi-field coupling solutions of functionally graded two-dimensional piezoelectric quasicrystal wedges and spaces. Appl. Math. Model. 109, 251–264 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, L.L., Wu, D., Xu, W.S., Yang, L.Z., Ricoeur, A., Wang, Z.B., Gao, Y.: Green’s functions of one-dimensional quasicrystal bi-material with piezoelectric effect. Phys. Lett. A 380(39), 3222–3228 (2016)

    MathSciNet  Google Scholar 

  20. Wu, D., Zhang, L.L., Xu, W.S., Yang, L.Z., Gao, Y.: Electroelastic Green’s function of one-dimensional piezoelectric quasicrystals subjected to multi-physics loads. J. Intel. Mat. Syst. Str. 28(12), 1651–1661 (2017)

    Google Scholar 

  21. Xu, W.S., Wu, D., Gao, Y.: Fundamental elastic field in an infinite plane of two-dimensional piezoelectric quasicrystal subjected to multi-physics loads. Appl. Math. Model. 52, 186–196 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Gao, Y., Ricoeur, A.: Three-dimensional Green’s functions for two-dimensional quasi-crystal bimaterials. P. R. Soc. A-Math. Phys. 467(2133), 2622–2642 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Wang, X.: Time-harmonic dynamic Green’s functions for one-dimensional hexagonal quasicrystals. Acta Mech. Solida Sin. 18(4), 302–306 (2005)

    MathSciNet  Google Scholar 

  24. Li, S., Li, L.H.: Effective elastic properties of one-dimensional hexagonal quasicrystal composites. Appl. Math. Mech.-Engl. Ed. 42(10), 1439–1448 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Hwu, C., Ikeda, T.: Electromechanical fracture analysis for corners and cracks in piezoelectric materials. Int. J. Solids Struct. 45(22–23), 5744–5764 (2008)

    MATH  Google Scholar 

  26. Ting, T.C.T.: The critical angle of the anisotropic elastic wedge subject to uniform tractions. J. Elast. 20(2), 113–130 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Hwu, C.: Some explicit expressions of extended Stroh formalism for two-dimensional piezoelectric anisotropic elasticity. Int. J. Solids Struct. 45(16), 4460–4473 (2008)

    MATH  Google Scholar 

  28. Ting, T.C.T.: Symmetric representation of stress and strain in the Stroh formalism and physical meaning of the tensors L, S, L(θ) and S(θ). J. Elast. 50(1), 91–96 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Hwu, C., Ting, T.C.T.: Solutions for the anisotropic elastic wedge at critical wedge angles. J. Elast. 24(1–3), 1–20 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Ting, T.C.T.: Line forces and dislocations in anisotropic elastic composite wedges and spaces. Phys. Status Solidi B 146(1), 81–90 (1988)

    Google Scholar 

  31. Chung, M.Y., Ting, T.C.T.: Line force, charge, and dislocation in anisotropic piezoelectric composite wedges and spaces. J. Appl. Mech-T. ASME. 62(2), 423–428 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Mu, X., Fu, X.Y., Zhu, Z.W., Zhang, L.L., Gao, Y.: Fundamental solutions of critical wedge angles for one-dimensional piezoelectric quasicrystal wedge. Appl. Math. Mech.-Engl. Ed. 43(5), 709–728 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Wang, R.H., Hu, C.Z., Gui, J.N.: Quasicrystal Physics. Science Press (2004). (in Chinese)

    Google Scholar 

  34. Fan, T.Y.: Mathematical Theory of Elasticity and Relevant Topics of Solid and Soft-Matter Quasicrystals and Its Applications. Beijing Institute of Technology Press (2014)

    Google Scholar 

  35. Long, F., Li, X.F.: Flamant problem of a cubic quasicrystal half-plane. Z. Angew. Math. Phys. 73(3), 1–13 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Long, F., Li, X.F.: Elastic field of a rotating cubic quasicrystal disk. Arch. Appl. Mech. 16, 1–15 (2022)

    Google Scholar 

  37. Long, F., Li, X.F.: Thermal stresses of a cubic quasicrystal circular disc. Mech. Res. Commun. 2022(124), 1–13 (2022)

    Google Scholar 

  38. Mu, X., Cao, T., Xu, W.S., Zhu, Z.W., Qin, T.Y., Zhang, L.L., Gao, Y.: Singularities of three-dimensional cubic piezoelectric quasicrystal composite wedges and spaces. Acta Mech. Solida Sin. 36(42), 143–155 (2022)

    Google Scholar 

  39. Hwu, C.B.: Anisotropic Elastic Plates. Springer (2010)

    MATH  Google Scholar 

  40. Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University, Oxford (1996)

    MATH  Google Scholar 

  41. Chen, B.J., Xiao, Z.M., Liew, K.M.: A line dislocation interacting with a semi-infinite crack in piezoelectric solid. Int. J. Eng. Sci. 42(7), 1–11 (2004)

    Google Scholar 

  42. Wang, X., Zhong, Z.: Interaction between a semi-infinite crack and a straight dislocation in a decagonal quasicrystal. Int. J. Eng. Sci. 42(5/6), 521–538 (2004)

    Google Scholar 

  43. Jiang, L.J., Liu, G.T.: The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals. Chin. Phys. B 26(4), 245–251 (2017)

    MathSciNet  Google Scholar 

  44. Liu, J.X., Wang, B., Du, S.Y.: Electro-elastic Green’s functions for a piezoelectric half-space and their applications. Appl. Math. Mech.-Engl. Ed. 18(11), 1–7 (1997)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12272402, 11972365, and 12102458) and China Agricultural University Education Foundation (No. 1101-2412001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangliang Zhang or Yang Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

By using Eqs. (1), (2), and (3), we have

$${\mathbf{Q}} = \left[ {\begin{array}{*{20}c} {C_{11} } & 0 & 0 & {R_{1} } & 0 & 0 & 0 \\ 0 & {C_{44} } & 0 & 0 & {R_{3} } & 0 & 0 \\ 0 & 0 & {C_{44} } & 0 & 0 & {R_{3} } & 0 \\ {R_{1} } & 0 & 0 & {K_{11} } & 0 & 0 & 0 \\ 0 & {R_{3} } & 0 & 0 & {K_{44} } & 0 & 0 \\ 0 & 0 & {R_{3} } & 0 & 0 & {K_{44} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & { - \xi_{11} } \\ \end{array} } \right], \, {\mathbf{R}} = \left[ {\begin{array}{*{20}c} 0 & 0 & {C_{12} } & 0 & 0 & {R_{2} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {d_{14} } \\ {C_{44} } & 0 & 0 & {R_{3} } & 0 & 0 & 0 \\ 0 & 0 & {R_{2} } & 0 & 0 & {K_{12} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {d_{123} } \\ {R_{3} } & 0 & 0 & {K_{44} } & 0 & 0 & 0 \\ 0 & {d_{14} } & 0 & 0 & {d_{123} } & 0 & 0 \\ \end{array} } \right], \, {\mathbf{T}} = \left[ {\begin{array}{*{20}c} {C_{44} } & 0 & 0 & {R_{3} } & 0 & 0 & 0 \\ 0 & {C_{44} } & 0 & 0 & {R_{3} } & 0 & 0 \\ 0 & 0 & {C_{11} } & 0 & 0 & {R_{1} } & 0 \\ {R_{3} } & 0 & 0 & {K_{44} } & 0 & 0 & 0 \\ 0 & {R_{3} } & 0 & 0 & {K_{44} } & 0 & 0 \\ 0 & 0 & {R_{1} } & 0 & 0 & {K_{11} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & { - \xi_{33} } \\ \end{array} } \right].$$
(A1)

By Eq. (29), we introduced a new function

$$F^{*} { = }{\text{Re}} \sum\limits_{\beta = 1}^{7} {\sum\limits_{\alpha = 1}^{7} {\left[ {\frac{{p_{\alpha } }}{{p_{\alpha } - \overline{p}_{\beta } }}\left( {{\mathbf{BI}}_{\alpha } {\mathbf{B}}^{ - 1} } \right){\mathbf{L}}\left( {{\overline{\mathbf{B}}\mathbf{I}}_{\beta } {\overline{\mathbf{B}}}^{ - 1} } \right)^{T} } \right]} }$$
(A2)

For Eq. (A2), first, the right side is replaced by its complex conjugate, then the \(\alpha\) and \(\beta\) are interchanged, and finally, matrix transpose is applied on the right. Based on these operations, we can obtain that Eq. (A3) is equal to Eq. (A2).

$$F^{*} { = }{\text{Re}} \sum\limits_{\beta = 1}^{7} {\sum\limits_{\alpha = 1}^{7} {\left[ {\frac{{ - \overline{p}_{\beta } }}{{p_{\alpha } - \overline{p}_{\beta } }}\left( {{\mathbf{BI}}_{\alpha } {\mathbf{B}}^{ - 1} } \right){\mathbf{L}}\left( {{\overline{\mathbf{B}}\mathbf{I}}_{\beta } {\overline{\mathbf{B}}}^{ - 1} } \right)^{T} } \right]} } .$$
(A3)

Using Eq. (15), we get

$${\mathbf{L}} - {\mathbf{H}}^{ - 1} {\mathbf{SS}} = {\mathbf{H}}^{ - 1} .$$
(A4)

Since H−1S is antisymmetric, Eq. (A4) can be re-expressed as follows:

$${\mathbf{H}}^{ - 1} - {\mathbf{L}} = {\mathbf{S}}^{T} {\mathbf{H}}^{ - 1} {\mathbf{S}}.$$
(A5)

In the above, H−1 and L are positive definite, while S is singular [40]. We can conclude that H−1- L is positive semi-definite.

Substituting Eqs. (37) and (38) into Eq. (36) to yield

$$\begin{gathered} \frac{1}{\pi }{\text{Im}} \left[ {{\mathbf{A}}_{1} < \ln \left( {x_{1} - p_{\alpha }^{(1)} d} \right) > {\mathbf{q}}} \right] + \frac{1}{\pi }{\text{Im}} \sum\limits_{\beta = 1}^{7} {\left[ {{\mathbf{A}}_{1} \left( {\ln \left( {x_{1} - \overline{p}_{\beta }^{(1)} d} \right)} \right){\mathbf{q}}_{\beta }^{(1)} } \right] = \frac{1}{\pi }{\text{Im}} \sum\limits_{\beta = 1}^{7} {\left[ {{\mathbf{A}}_{2} \left( {\ln \left( {x_{1} - p_{\beta }^{(1)} d} \right)} \right){\mathbf{q}}_{\beta }^{(2)} } \right],} } \hfill \\ \frac{1}{\pi }{\text{Im}} \left[ {{\mathbf{B}}_{1} < \ln \left( {x_{1} - p_{\alpha }^{(1)} d} \right) > {\mathbf{q}}} \right] + \frac{1}{\pi }{\text{Im}} \sum\limits_{\beta = 1}^{7} {\left[ {{\mathbf{B}}_{1} \left( {\ln \left( {x_{1} - \overline{p}_{\beta }^{(1)} d} \right)} \right){\mathbf{q}}_{\beta }^{(1)} } \right]} = \frac{1}{\pi }{\text{Im}} \sum\limits_{\beta = 1}^{7} {\left[ {{\mathbf{B}}_{2} \left( {\ln \left( {x_{1} - p_{\beta }^{(1)} d} \right)} \right){\mathbf{q}}_{\beta }^{(2)} } \right].} \hfill \\ \end{gathered}$$
(A6)

Similar manipulation of Eq. (21), we have

$$\frac{1}{\pi }{\text{Im}} \left[ {{\mathbf{A}}_{1} < \ln \left( {x_{1} - p_{\alpha }^{(1)} d} \right) > {\mathbf{q}}} \right] = - \frac{1}{\pi }{\text{Im}} \left[ {{\overline{\mathbf{A}}}_{1} < \ln \left( {x_{1} - \overline{p}_{\alpha }^{(1)} d} \right) > {\overline{\mathbf{q}}}} \right],$$
(A7)

By Eqs. (A7), (A6)1, and Eq. (22)1, we derive

$$- {\text{Im}} \sum\limits_{\beta = 1}^{7} {\left[ {{\overline{\mathbf{A}}}_{1} \left( {\ln \left( {x_{1} - \overline{p}_{\beta }^{(1)} d} \right)} \right){\mathbf{I}}_{\beta } {\overline{\mathbf{q}}}} \right]} + {\text{Im}} \sum\limits_{\beta = 1}^{7} {\left[ {{\mathbf{A}}_{1} \left( {\ln \left( {x_{1} - \overline{p}_{\beta }^{(1)} d} \right)} \right){\mathbf{q}}_{\beta }^{(1)} } \right]} = - {\text{Im}} \sum\limits_{\beta = 1}^{7} {\left[ {{\overline{\mathbf{A}}}_{2} \left( {\ln \left( {x_{1} - \overline{p}_{\beta }^{(1)} d} \right)} \right){\overline{\mathbf{q}}}_{\beta }^{(2)} } \right],}$$
(A8)

hence, Eq. (A8) has the expression

$${\mathbf{A}}_{1} {\mathbf{q}}_{\beta }^{(1)} + {\overline{\mathbf{A}}}_{2} {\overline{\mathbf{q}}}_{\beta }^{(2)} = {\overline{\mathbf{A}}}_{1} {\mathbf{I}}_{\beta } {\overline{\mathbf{q}}}.$$
(A9)

With the aid of Eq. (A6)2, the following equation is obtained due to similarity

$${\mathbf{B}}_{1} {\mathbf{q}}_{\beta }^{(1)} + {\overline{\mathbf{B}}}_{2} {\overline{\mathbf{q}}}_{\beta }^{(2)} = {\overline{\mathbf{B}}}_{1} {\mathbf{I}}_{\beta } {\overline{\mathbf{q}}}.$$
(A10)

Equation (A9) has an alternative expression

$$\left( {{\mathbf{A}}_{1} {\mathbf{B}}_{1}^{ - 1} } \right){\mathbf{B}}_{1} {\mathbf{q}}_{\beta }^{(1)} + \left( {{\overline{\mathbf{A}}}_{2} {\overline{\mathbf{B}}}_{2}^{ - 1} } \right){\overline{\mathbf{B}}}_{2} {\overline{\mathbf{q}}}_{\beta }^{(2)} = \left( {{\overline{\mathbf{A}}}_{1} {\overline{\mathbf{B}}}_{1}^{ - 1} } \right){\overline{\mathbf{B}}}_{1} {\mathbf{I}}_{\beta } {\overline{\mathbf{q}}}.$$
(A11)

Making use of Eqs. (A10) and (A11) give

$$\left( {{\mathbf{A}}_{1} {\mathbf{B}}_{1}^{ - 1} - {\overline{\mathbf{A}}}_{2} {\overline{\mathbf{B}}}_{2}^{ - 1} } \right){\overline{\mathbf{B}}}_{2} {\overline{\mathbf{q}}}_{\beta }^{(2)} = \left( {{\mathbf{A}}_{1} {\mathbf{B}}_{1}^{ - 1} - {\overline{\mathbf{A}}}_{1} {\overline{\mathbf{B}}}_{1}^{ - 1} } \right){\overline{\mathbf{B}}}_{1} {\mathbf{I}}_{\beta } {\overline{\mathbf{q}}},$$
(A12)

or

$$\left( {{\mathbf{M}}_{1}^{ - 1} + {\overline{\mathbf{M}}}_{2}^{ - 1} } \right){\overline{\mathbf{B}}}_{2} {\overline{\mathbf{q}}}_{\beta }^{(2)} = 2{\mathbf{L}}_{1}^{ - 1} \left( {{\overline{\mathbf{B}}}_{1} {\mathbf{I}}_{\beta } {\overline{\mathbf{q}}}} \right),$$
(A13)

where

$${\mathbf{M}} = - i{\mathbf{BA}}^{ - 1} = {\mathbf{H}}^{ - 1} + i{\mathbf{H}}^{ - 1} {\mathbf{S}}, \, {\mathbf{M}}^{ - 1} = i{\mathbf{AB}}^{ - 1} = {\mathbf{L}}^{ - 1} - i{\mathbf{SL}}^{ - 1} .$$
(A14)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Xu, W., Zhu, Z. et al. Image force in cubic piezoelectric quasicrystal half-space and bi-material composite space. Acta Mech 234, 5331–5347 (2023). https://doi.org/10.1007/s00707-023-03651-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03651-x

Navigation