Skip to main content
Log in

A simplified deformation gradient theory and its experimental verification

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, materials with nonlocal properties are considered as a continuum model composed of micro-elements with certain volumes. Based on this hypothesis, the deformation and corresponding energy of micro-structure system are studied in detail, and the equivalent governing equations in simplified form are given. In the framework of micro-structure system, a simplified deformation gradient theory (SDG) with two length-scale parameters is obtained by defining the micro-strain and micro-rotation of elements specifically from the perspective of deformation, which has definite physical significance. The generalized strain energy is introduced in the SDG, which gives a new explanation of elastic moduli, and the nonlocal effect parameter is defined to capture nonlocal properties of materials quantitatively. Under certain micro-deformation assumptions, the SDG can be degenerated into couple stress theory, strain gradient theory and classical continuum theory. The nonlocal deformation consists of two branches: one is the macro-deformation of non-uniform materials and the other is the micro-deformation of materials with micro-structures. For the macro-tension of particle reinforced composites, the SDG successfully verifies and predicts the approximatively linear relationship between elastic moduli and particle sizes on the micron scale. Moreover, the theoretical solution to nonlocal micro-torsion based on the SDG agrees well with the experiment results and also predicts the torsion stiffness of cylinder at smaller diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang, C.Z., Alici, G.: Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. Experimental determination of length-scale factors. J. Phys. D. Appl. Phys. 44(33), 335501 (2011)

    Article  Google Scholar 

  2. Tang, C.Z., Alici, G.: Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: Ii. Experimental verification of deflection models using atomic force microscopy. J. Phys. D. Appl. Phys. 44(33), 335502 (2011)

    Article  Google Scholar 

  3. Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. Aip Adv. 6(10), 51–59 (2016)

    Article  Google Scholar 

  4. Li, Z.K., He, Y.M., Lei, J., Guo, S., Liu, D.B., Wang, L.: A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018)

    Article  Google Scholar 

  5. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  6. Anderson, W.B., Lakes, R.S.: Size effects due to cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29(24), 6413–6419 (1994)

    Article  Google Scholar 

  7. Andrews, E.W., Gioux, G., Onck, P., Gibson, L.J.: Size effects in ductile cellular solids. Part ii: experimental results. Int. J. Mech. Sci. 43(3), 701–713 (2001)

    Article  MATH  Google Scholar 

  8. Chong, A.C., Lam, D.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14(10), 4103–4110 (1999)

    Article  Google Scholar 

  9. Bastawros, A.F., Bart, S.H., Evans, A.G.: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48(2), 301–322 (2000)

    Article  MATH  Google Scholar 

  10. Yang, J., Cady, C., Hu, M.S., Zok, F., Mehrabian, R., Evans, A.G.: Effects of damage on the flow strength and ductility of a ductile al alloy reinforced with sic particulates. Acta Metal. Et. Mater. 38(12), 2613–2619 (1990)

    Article  Google Scholar 

  11. Lloyd, D.J.: Particle-reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39(1), 1–23 (1994)

    Article  Google Scholar 

  12. Kouzeli, M., Mortensen, A.: Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50(1), 39–51 (2002)

    Article  Google Scholar 

  13. Yan, Y.W., Geng, L., Li, A.B.: Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites. Mater. Sci. Eng. A 448(1–2), 315–325 (2007)

    Article  Google Scholar 

  14. Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3(5), 731–742 (1967)

    Article  Google Scholar 

  16. Kunin, I.A.: Elastic Media with Microstructure. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  17. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rogula, D.: Nonlocal Theory of Material Media. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  19. Kunin, I.A.: Elastic Media with Microstructure I: One-Dimensional Models. Springer Berlin Heidelberg (1982) https://doi.org/10.1007/978-3-642-81748-9

  20. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  21. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  22. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Mech. 54(9), 4703–4710 (1983)

    Google Scholar 

  23. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  MATH  Google Scholar 

  24. Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43(13/14), 1157–1184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cosserat, E.: Theorie des corpes deformables. Nature 81, 67 (1909)

    Article  MATH  Google Scholar 

  26. Voigt, W.: Theoretische studien uber die elasticitatsverhaltnisse der krystalle. Annalen der Physik, 38, 573–587 (1889)

  27. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. An. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koiter, W.T.: Couple-stress in the theory of elasticity. Int. J. Solids Struct. 67, 17–44 (1963)

    MATH  Google Scholar 

  29. Mindlin, R.D., Eshel, N.N.: Effects of couple-stresses in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1968)

    Article  Google Scholar 

  30. Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  31. Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)

    Article  Google Scholar 

  32. Shaat, M.: Physical and mathematical representations of couple stress effects on micro/nanosolids. Int. J. Appl. Mech. 07(01), 1550012 (2015)

    Article  Google Scholar 

  33. Neff, P., Munch, I., Ghiba, I.D., Madeo, A.: On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of a.r hadjesfandiari and g.f. dargush. Int. J. Solids Struct. 81, 233–243 (2016)

    Article  Google Scholar 

  34. Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46(13), 2757–2764 (2009)

    Article  MATH  Google Scholar 

  35. Chen, W.J., Li, X.P.: A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. Arch. Appl. Mech. 84(3), 323–341 (2014)

    Article  MATH  Google Scholar 

  36. Deng, G.Q., Dargush, G.: Mixed convolved lagrange multiplier variational formulation for size-dependent elastodynamic couple stress response. Acta Mech. 233(5), 1837–1863 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y.X., Zhang, X., Shen, H.M., Liu, J., Zhang, B.: Couple stress-based 3d contact of elastic films. Int. J. Solids Struct. 191–192, 449–463 (2020)

    Article  Google Scholar 

  38. Liu, N., Fu, L.Y., Tang, G., Kong, Y., Xu, X.Y.: Modified lsm for size-dependent wave propagation: comparison with modified couple stress theory. Acta Mech. 231(4), 1285–1304 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Apostolakis, G., Dargush, G.F.: Size-dependent couple stress natural frequency analysis via a displacement-based variational method for two-and three-dimensional problems. Acta Mech. 234, 891–910 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106(4), 326–330 (1984)

    Article  Google Scholar 

  41. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  MATH  Google Scholar 

  42. Han, C.S., Gao, H.J., Huang, Y.G., Nix, W.D.: Mechanism-based strain gradient plasticity-i. Theory. J. Mech. Phys. Solids 47(5), 1239–1263 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35(3/6), 259–280 (2003)

    Article  Google Scholar 

  44. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10), 2245–2271 (2001)

    Article  MATH  Google Scholar 

  45. Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  46. Zhou, S.J., Li, A.Q., Wang, B.L.: A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials. Int. J. Solids Struct. 80, 28–37 (2016)

    Article  Google Scholar 

  47. Fu, G.Y., Zhou, S.J., Qi, L.: On the strain gradient elasticity theory for isotropic materials. Int. J. Eng. Sci. 154, 103348 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rahimi, Z., Rezazadeh, G., Sumelka, W.: A non-local fractional stress-strain gradient theory. Int. J. Mech. Mater. Des. 16(2), 265–278 (2020)

    Article  Google Scholar 

  49. Fu, G.Y., Zhou, S.J., Qi, L.: A size-dependent Bernoulli–Euler beam model based on strain gradient elasticity theory incorporating surface effects. ZAMM 99(6), 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  50. Jiang, Y.Y., Li, L., Hu, Y.J.: Strain gradient elasticity theory of polymer networks. Acta Mech. 233(8), 3213–3231 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: Aifantis versus lam strain gradient models of bishop elastic rods. Acta Mech. 230(8), 2799–2812 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lazar, M.: Incompatible strain gradient elasticity of mindlin type: screw and edge dislocations. Acta Mech. 232(9), 3471–3494 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  53. Le, T.M., Vo, D., Rungamornrat, J., Bui, T.Q.: Strain-gradient theory for shear deformation free-form microshells: governing equations of motion and general boundary conditions. Int. J. Solids Struct. 248, 111579 (2022)

    Article  Google Scholar 

  54. Li, G.E., Kuo, H.Y.: Effects of strain gradient and electromagnetic field gradient on potential and field distributions of multiferroic fibrous composites. Acta Mech. 232(4), 1353–1378 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration Mech. An. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ashton, J.E., Halpin, J.C., Petit, A.: Primer on Composite Materials: Analysis. Washington University, Washington (1969)

    Google Scholar 

  57. Chong, A.C., Yang, F., Lam, D.C.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16(4), 1052–1058 (2001)

    Article  Google Scholar 

  58. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metal Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

Download references

Funding

Funding is provided by National Social Science Fund of China (Grant No. 11521202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefu Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Huang, K. A simplified deformation gradient theory and its experimental verification. Acta Mech 234, 2963–2984 (2023). https://doi.org/10.1007/s00707-023-03545-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03545-y

Navigation