Skip to main content
Log in

Moving point load on a beam with viscoelastic foundation containing fractional derivatives of complex order

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the dynamical behavior of the Euler-Bernoulli beam resting on a generalized Kelvin-Voigt-type viscoelastic foundation, subjected to a moving point load, is analyzed. Generalization is done in the sense of fractional derivatives of complex-order type. Mixed initial-boundary value problem is formulated, and the solution is given in the form of Fourier series with respect to space variable, where coefficients satisfy a certain system of ordinary fractional differential equations of complex fractional order with respect to time variable. Thermodynamical restrictions on the parameters of the model are also given. It is shown that those are sufficient for the existence and the uniqueness of the solution. The solution of the problem is expressed in closed form, by using the inverse Laplace transform method. A numerical example confirming the invoked theory is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hetenyi, M.: Beams on Elastic Foundations. University of Michigan Press, Michigan (1946)

    MATH  Google Scholar 

  2. Praharaj, R.K., Datta, N., Sunny, M.R., Verma, Y.: Transverse vibration of thin ractangular orthotropic plates on translational and rotational elastic edge supports: a semi-analytical approach. Iran J. Sci. Tehnol. 45, 863–878 (2021)

    Google Scholar 

  3. Ono, K., Yamada, M.: Analysis of railway track vibration. J. Sound Vib. 130, 269–297 (1989)

  4. Froio, D., Rizzi, E., Simoes, F.M.F., Da Costa, A.P.: Dynamics of a beam on a bilinear elastic foundation under harmonic moving load. Acta. Mech. 229, 4141–4165 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lee, H.P.: Dynamic response of a Timoshenko beam on a Winkler foundation subjected to a moving mass. Appl. Acoust. 55, 203–215 (1998)

    Article  Google Scholar 

  6. Sun, L.: Dynamic displacement response of beam-type structures to moving line loads. Int. J. Solids Struct. 38, 8869–8878 (2001)

    Article  MATH  Google Scholar 

  7. Thambiratnam, D., Zhuge, Y.: Dynamic analysis of beams on an elastic foundation subjected to moving loads. J. Sound Vib. 198, 149–169 (1996)

    Article  MATH  Google Scholar 

  8. Dimitrovova, Z.: Complete semi-analytical solution for a uniformly moving mass on a beam on a two-parameter visco-elastic foundation with non-homogeneous initial conditions. Int. J. Mech. Sci. 144, 283–311 (2018)

    Article  Google Scholar 

  9. Di Lorenzo, S., Di Paola, M., Failla, G., Pirrotta, A.: On the moving load problem in Euler-Bernoulli uniform beams with viscoelastic supports and joints Acta. Mech. 228, 805–821 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Shakeri, R., Younesian, D.: Analytical solution for the sound radiation field of a viscoelastically supported beam traversed by a moving load. Shock Vib. (2014). https://doi.org/10.1155/2014/530131

    Article  Google Scholar 

  11. Basu, D., Rao, N.S.V.K.: Analytical solutions for Euler-Bernoulli beam on visco-elastic foundation subjected to moving load. Int. J. Numer. Anal. Meth. Geomech. 37, 945–960 (2013)

    Article  Google Scholar 

  12. Stojanovic, V., Kozic, P., Petkovic, M.D.: Dynamic instabilite and critical velocity of a mass moving uniformly along a stabilized infinite beam. Int. J. Solids Struct. 108, 164–174 (2017)

  13. Stojanovic, V., Petkovic, M.D.: Dynamic stability of vibrations and critical velocity of a complex bogie system moving on a flexibly supported infinity track. J. Sound Vib. 434, 475–501 (2018)

    Article  Google Scholar 

  14. Stojanovic, V., Petkovic, M.D., Deng, J.: Instability of vehicle systems moving along an infinite beam on a viscoelastic foundation. Eur. J. Mech. A Solids. 69, 238–254 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stojanovic, V., Petkovic, M.D., Deng, J.: Stability and vibrations of an overcritical speed moving multiple discrete oscillators along an infinite continuous structure. Eur. J. Mech. A Solids. 75, 267–280 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stojanovic, V., Petkovic, M.D., Deng, J.: Stability of vibrations of a moving railway vehicle along an infinite complex three-part viscoelastic beam/foundation system. Int. J. Mech. Sci. 136, 155–168 (2018)

    Article  Google Scholar 

  17. Eldred, L.B., Baker, V.P., Palazotto, A.N.: Kelvin-Voigt versus fractional derivative model as constitutive relations for viscoelastic materials. AIAA J. 33, 547–550 (1995)

    Article  MATH  Google Scholar 

  18. Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlin. Sci. Numer. Simulat. 15, 939–945 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics, Hoboken. Wiley Online Library, NJ (2014)

    Book  MATH  Google Scholar 

  20. Atanackovic, T.M., Janev, M., Konjik, S., Pilipovic, S., Zorica, D.: Vibrations on an elastic rod on a viscoelastic foundation of complex fractional Kelvin-Voigt type. Meccanica. 50, 1679–1692 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Praharaj, R.K., Datta, N.: Dynamic response of Euler-Bernoulli beam resting on fractionally damped viscoelastic foundation subjected to a moving point load. J. Mech. Eng. Sci. (2020). https://doi.org/10.1177/0954406220932597

    Article  Google Scholar 

  22. Praharaj, R.K., Datta, N., Sunny, M.R.: Dynamic response of fractionally damped viscoelastic plates subjected to a moving point load. J. Vib. Acoust. 142, 041002–1 (2020)

    Article  Google Scholar 

  23. Praharaj, R.K., Datta, N.: Dynamic response spectra of fractionally damped viscoelastic beams subjected to moving load. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1725563

  24. Freundlich, J.: Dynamic response of a simply supported viscoelastic beam of a fractional derivative type to a moving force load. J. Theor. Appl. Mech. 54, 1433–1445 (2016)

    Article  Google Scholar 

  25. Ouzizi, A., Abdoun, F., Azrar, L.: Nonlinear dynamics of beams on nonlinear fractional viscoelastic foundation subjected to moving load with variable speed. J. Sound Vib. 523, 116730 (2022)

    Article  Google Scholar 

  26. Truesdell, C.: Das ungelöste Hauptproblem der endlichen Elastizitäts theorie. Z. Angew. Math. Mech. 36, 97–103 (1956)

  27. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)

    Article  MATH  Google Scholar 

  28. Atanackovic, T.M.: On a distributed derivative model of a viscoelastic body. C.R. Mecanique. 331(10), 687–692 (2003)

  29. Atanackovic, T.M., Konjik, S., Oparnica, L.J., Zorica, D.: Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. (2011). https://doi.org/10.1155/2011/975694

    Article  MathSciNet  MATH  Google Scholar 

  30. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibration and Diffusion Processes, London. Wiley-ISTE, UK (2014)

  31. Fabrizio, M.: Fractional rheological models for thermomechanical systems. Dissipation and free energies. Fract. Calc. Appl. Anal. 17, 206–223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hanyga, A.: Physically acceptable viscoelastic models. In: Hutter, K., Wang, Y. (eds.) Trends in Applications of Mathematics to Mechanics, pp. 125–136. Shaker Verlag GmbH, Aachen (2005)

    Google Scholar 

  33. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  34. Amendola, G., Fabrizio, M., Golden, J.M.: Thermodynamics of Materials with Memory, New York, Dordrecht, Heidelberg. Springer, London (2010)

  35. Atanackovic, T.M., Janev, M., Pilipovic, S.: On the thermodynamical restrictions in isothermal deformations of fractional Burgers model. Philos. T. R. Soc. A. (2020). https://doi.org/10.1098/rsta.2019.0278

    Article  MATH  Google Scholar 

  36. Atanackovic, T.M., Janev, M., Pilipovic, S., Selesi, D.: Viscoelasticity of fractional order: New restrictions on constitutive equations with applications. Int. J. Struct. Stab. Dy. 20(13), 2041011 (2020)

    Article  MathSciNet  Google Scholar 

  37. Atanackovic, T.M.: Stability Theory of Elastic Rods. World Scientific, River Edge N.J (1997)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Project F-64 of Serbian Academy of Sciences and Arts (TMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Rehlicki Lukešević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukešević, L.R., Janev, M., Novaković, B.N. et al. Moving point load on a beam with viscoelastic foundation containing fractional derivatives of complex order. Acta Mech 234, 1211–1220 (2023). https://doi.org/10.1007/s00707-022-03429-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03429-7

Navigation