Skip to main content
Log in

Modeling dynamic flows of grain–fluid mixtures by coupling the mixture theory with a dilatancy law

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A depth-averaged two-velocity grain–fluid mixture model is proposed to describe flows of grain–fluid mixtures. Motivated by the experimental observations, the proposed model considers that the granular and the fluid phases are moving with different velocities, and the velocity difference between the granular phase and the fluid phase is coupled with the granular dilatancy that is described by a granular dilatancy law. The characteristics of flows allow to formulate a simpler depth-averaged PDE system. To scrutinize the proposed equations, an analysis for steady flows in rectangular channels is performed, which reproduces the cross-stream velocity profiles commonly observed in fields. Additionally, a uniform flow is investigated to illustrate the effects of the granular dilatancy on the velocities, flow depth, and volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media, Between Fluid and Solid. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  2. Bouchut, F., Fernandez-Nieto, E.D., Mangeney, A., Narbona-Reina, G.: A two-phase two-layer model for fluidized granular flows with dilatancy effects. https://hal-upec-upem.archives-ouvertes.fr/hal-01161930 (2016)

  3. George, D.L., Iverson, R.M.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests, Proc. R. Soc. Lond. A 470, 2170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hungr, O.: Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surf. Process. Landf. 25, 483–495 (2000)

    Article  Google Scholar 

  5. Iverson, R.M., George, D.L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. Lond. A 470, 20130819 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 106(B1), 537–552 (2001)

    Article  Google Scholar 

  7. Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E., Brien, D.L.: Acute sensitivity of landslide rates to initial soil porosity. Science 290, 513–516 (2000)

    Article  Google Scholar 

  8. Kaitna, R., Hsu, L., Rickenmann, D., Dietrich, W.E.: On the development of an unsaturated front of debris flows. In: Genevois, R., Hamilton, D.L., Prestininzi, A. (eds.) Italian Journal of Engineering Geology and Environment-Book. 5th International Conference on Debris-Flow Hazards: Mitigation, Mechanics, Prediction and Assessment, Padua, 14–17 June 2011, pp. 351–358. Casa Editrice Università La Sapienza (2011)

  9. Meng, X., Wang, Y.: Modelling and numerical simulation of two-phase debris flows. Acta Geotech. 11, 1027–1045 (2016)

    Article  Google Scholar 

  10. Pailha, M., Nicolas, M., Pouliquen, O.: Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20, 111701 (2008)

    Article  MATH  Google Scholar 

  11. Pailha, M., Pouliquen, O.: A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115–135 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pierson, T.C.: Flow behavior of channelized debris flows, Mount St. Helens, Washington. In: Abrahams, A.D. (ed.) Hillslope Processes, pp. 269–296. Allen and Unwin press, Winchester (1986)

    Google Scholar 

  13. Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Proc. R. Soc. Lond. A 363(1832), 1573–1601 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Prochnow, M., Chevoir, F., Albertelli, M.: Dense granular flows down a rough inclined plane. In: Proceedings of XIII International Congress on Rheology, Cambridge, UK (2000)

  15. Reynolds, O.: Dilatancy. Nature 33, 429–430 (1886)

    Google Scholar 

  16. Rondon, L., Pouliquen, O., Aussillous, P.: Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301 (2011)

    Article  Google Scholar 

  17. Roux, S., Radjai, F.: Texture-dependent rigid plastic behavior. In: Herrmann, H.J. et al. (eds.) Proceedings: Physics of Dry Granular Media, September 1997, Cargése, France, pp. 305–311. Kluwer (1998)

  18. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schaeffer, D.G., Iverson, R.M.: Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback. SIAM Appl. Math. 69, 768–786 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Truesdell, C.: Rational Thermodynamics, 2nd edn. Springer, New York (1984)

    Book  MATH  Google Scholar 

  21. Wang, Y., Hutter, K., Pudasaini, S.P.: The Savage–Hutter theory: a system of partial differential equations for avalanche flows of snow, debris, and mud. J. App. Math. Mech. 84(8), 507–527 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Wang, Y., Hutter, K.: A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta 38, 214–233 (1999)

    Article  Google Scholar 

  23. Wang, Y., Hutter, K.: Comparisons of serval numerical methods with respect to convectively-dominated problems. Int. J. Numer. Methods Fluids 37, 721–745 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Wang, Y. Modeling dynamic flows of grain–fluid mixtures by coupling the mixture theory with a dilatancy law. Acta Mech 229, 2521–2538 (2018). https://doi.org/10.1007/s00707-018-2111-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2111-9

Navigation