Skip to main content
Log in

Modeling the non-isothermal viscoelastic response of glassy polymers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Experimental data are reported on polycarbonate in tensile tests with a constant strain rate and relaxation tests in a wide range of temperatures. It is demonstrated that the growth of temperature results in a decrease in Young’s modulus and a strong increase in the relaxation rate. Constitutive equations are developed for the non-isothermal linear viscoelastic response of glassy polymers when the rates of heating/cooling and stress relaxation are comparable. A good agreement is demonstrated between the observations in relaxation tests on polycarbonate, poly(methyl methacrylate), polystyrene, and epoxy resin, and results of simulation. The model is applied to the numerical analysis of creep flow under non-isothermal multi-step thermal programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drozdov, A.D., Christiansen, J.deC.: Creep failure of polypropylene: experiments and constitutive modeling. Int. J. Fract. 159, 63–79 (2009)

  2. Drozdov, A.D.: Creep rupture and viscoelastoplasticity of polypropylene. Eng. Fract. Mech. 77, 2277–2293 (2010)

    Article  Google Scholar 

  3. Guevara-Morales, A., Figueroa-Lopez, U.: Residual stresses in injection molded products. J. Mater. Sci. 49, 4399–4415 (2014)

    Article  Google Scholar 

  4. Peters, K.: Polymer optical fiber sensors—a review. Smart Mater. Struct. 20, 013002 (2011)

    Article  Google Scholar 

  5. Bilro, L., Alberto, N., Pinto, J.L., Nogueira, R.: Optical sensors based on plastic fibers. Sensors 12, 12184–12207 (2012)

    Article  Google Scholar 

  6. Marques, C.A.F., Webb, D.J., Andre, P.: Polymer optical fiber sensors in human life safety. Opt. Fiber Technol. 36, 144–154 (2017)

    Article  Google Scholar 

  7. Large, M.C.J., Moran, J., Ye, L.: The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF). Meas. Sci. Technol. 20, 034014 (2009)

    Article  Google Scholar 

  8. Saez-Rodriguez, D., Nielsen, K., Bang, O., Webb, D.J.: Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers. Opt. Lett. 40, 1476–1479 (2015)

    Article  Google Scholar 

  9. McCrum, N.G.: Inadequacies in time-temperature equivalence. J. Polym. Sci. A 2, 3951–3950 (1964)

    Google Scholar 

  10. Buckley, C.P.: Prediction of stress in a linear viscoelastic solid strained while cooling. Rheol. Acta 27, 224–229 (1988)

    Article  MATH  Google Scholar 

  11. Drozdov, A.D.: A model for the non-isothermal viscoelastic behavior of polymers. Polym. Eng. Sci. 37, 1983–1997 (1997)

    Article  Google Scholar 

  12. Green, M.S., Tobolsky, A.V.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80–92 (1946)

    Article  Google Scholar 

  13. Richeton, J., Schlatter, G., Vecchio, K.S., Remond, Y., Ahzi, S.: A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer 46, 8194–8201 (2005)

    Article  Google Scholar 

  14. Chen, K., Schweizer, K.S.: Microscopic constitutive equation theory for the nonlinear mechanical response of polymer glasses. Macromolecules 41, 5908–5918 (2008)

    Article  Google Scholar 

  15. Wang, H., Zhou, H., Huang, Z., Zhang, Y., Zhao, X.: Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures. Mech. Time-Depend. Mater. 21, 97–117 (2017)

    Article  Google Scholar 

  16. Sollich, P.: Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58, 738–759 (1998)

    Article  Google Scholar 

  17. Chen, Y.C., Kuang, J.H., Chen, L.W., Chuang, H.C.: Effect of plastic strain energy density on polymer optical fiber power losses. Opt. Lett. 31, 879–881 (2006)

    Article  Google Scholar 

  18. Abang, A., Webb, D.J.: Effects of annealing, pre-tension and mounting on the hysteresis of polymer strain sensors. Meas. Sci. Technol. 25, 015102 (2014)

    Article  Google Scholar 

  19. Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Makradi, A.: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int. J. Solids Struct. 44, 7938–7954 (2007)

    Article  MATH  Google Scholar 

  20. Dupaix, R.B., Boyce, M.C.: Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater. 39, 39–52 (2007)

    Article  Google Scholar 

  21. Srivastava, V., Chester, S.A., Ames, N.M., Anand, L.: A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int. J. Plast. 26, 1138–1182 (2010)

    Article  MATH  Google Scholar 

  22. Mathiesen, D., Vogtmann, D., Dupaix, R.B.: Characterization and constitutive modeling of stress-relaxation behavior of poly(methyl methacrylate) (PMMA) across the glass transition temperature. Mech. Mater. 71, 74–84 (2014)

    Article  Google Scholar 

  23. Abdel-Wahab, A.A., Ataya, S., Silberschmidt, V.V.: Temperature-dependent mechanical behaviour of PMMA: experimental analysis and modelling. Polym. Test. 58, 86–95 (2017)

    Article  Google Scholar 

  24. Cao, K., Wang, Y., Wang, Y.: Effects of strain rate and temperature on the tension behavior of polycarbonate. Mater. Des. 38, 53–58 (2012)

    Article  Google Scholar 

  25. Cao, K., Wang, Y., Wang, Y.: Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates. Int. J. Solids Struct. 51, 2539–2548 (2014)

    Article  Google Scholar 

  26. Bauwens-Crowet, C., Bauwens, J.-C., Homes, G.: The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. J. Mater. Sci. 7, 176–183 (1972)

    Article  Google Scholar 

  27. Inoue, T., Okamoto, H., Osaki, K.: Large deformation of polycarbonate near the glass transition temperature. Macromolecules 25, 7069–7070 (1992)

    Article  Google Scholar 

  28. Onu, A., Legras, R., Mercier, J.P.: Phase equilibrium and glass-transition temperatures in plasticized amorphous bisphenol-A polycarbonate. J. Polym. Sci.: Polym. Phys. Ed. 14, 1187–1199 (1976)

    Google Scholar 

  29. Yee, A.F., Bankert, R.J., Ngai, K.L., Rendell, R.W.: Strain and temperature accelerated relaxation in polycarbonate. J. Polym. Sci. B: Polym. Phys. 26, 2463–2483 (1988)

    Article  Google Scholar 

  30. Mariani, P., Frassine, R., Rink, M., Pavan, A.: Viscoelasticity of rubber-toughened poly(methyl methacrylate). Part I: deformational behavior. Polym. Eng. Sci. 36, 2750–2757 (1996)

    Article  Google Scholar 

  31. Roetling, J.A.: Yield stress behaviour of polymethylmethacrylate. Polymer 6, 311–317 (1965)

    Article  Google Scholar 

  32. Sondhauss, J., Lantz, M., Gotsmann, B., Schirmeisen, A.: \(\beta \)-relaxation of PMMA: tip size and stress effects in friction force microscopy. Langmuir 31, 5398–5405 (2015)

    Article  Google Scholar 

  33. Rek, V., Grguric, T.H., Jelcic, Z.: Creep relaxation and stress relaxation of PS-HI/SEBS blends. Macromol. Symp. 202, 127–141 (2003)

    Article  Google Scholar 

  34. Kimmel, R.M., Uhlmann, D.R.: Activation energy spectra for relaxation in amorphous materials. I. Volume relaxation in polystyrene and polyvinyl acetate. J. Appl. Phys. 40, 4254–4260 (1969)

    Article  Google Scholar 

  35. Huang, C.-L., Chen, Y.-C., Hsiao, T.-J., Tsai, J.-C., Wang, C.: Effect of tacticity on viscoelastic properties of polystyrene. Macromolecules 44, 6155–6161 (2011)

    Article  Google Scholar 

  36. Kim, Y.K., White, S.R.: Stress relaxation behavior of 3501–6 epoxy resin during cure. Polym. Eng. Sci. 36, 2852–2862 (1996)

    Article  Google Scholar 

  37. Wan, J., Li, C., Bu, Z.-Y., Fan, H., Li, B.-G.: Acrylonitrile-capped poly(propylene imine) dendrimer curing agent for epoxy resins: model-free isoconversional curing kinetics, thermal decomposition and mechanical properties. Mater. Chem. Phys. 138, 303–312 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Drozdov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, A.D., Christiansen, J.d. Modeling the non-isothermal viscoelastic response of glassy polymers. Acta Mech 229, 1137–1156 (2018). https://doi.org/10.1007/s00707-017-2053-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2053-7

Navigation