Skip to main content
Log in

Stress investigation on a cracked craze interacting with a nearby circular inclusion in polymer composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In polymer composites, inclusions (fillers) are introduced into the glassy polymeric matrices in order to improve the toughness properties as the brittleness is one of the fatal drawbacks for glassy polymers. For the first time, in our current study, the stress analysis has been performed on the interaction between a circular inclusion and a craze with an internal small crack in polymeric composites. A craze can be treated as a crack with fibrils bridging the two crack surfaces. The forces applied by the fibrils to the crack surfaces (pulling the two surfaces closer) depend on the crack opening displacement. However, the crack opening displacement is directly related to the forces applied by the craze fibrils. To solve this dilemma, an iterative procedure is proposed for the first time to solve the formulated singular integral equations. The craze thickness profiles, the cohesive stress distribution, and the fracture toughness of the polymeric composites are investigated thoroughly. Moreover, due to the influence of the inclusion, the uneven craze thickness profiles are observed from the left to the right part of the entire craze zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Utracki, L.A., Jamieson, A.M.: Polymer Physics from Suspensions to Nanocomposites and Beyond. Wiley, Hoboken (2010)

    Book  Google Scholar 

  2. Tonpheng, B., Yu, J., Andersson, B.M., Andersson, O.: Tensile strength and Young’s modulus of polyisoprene/single-wall carbon nanotube composites increased by high pressure cross-linking. Macromolecules 43, 7680–7688 (2010). doi:10.1021/ma101484e

    Article  Google Scholar 

  3. He, R., Zhan, X., Zhang, Q., Zhang, G., Chen, F.: Control of inclusion size and toughness by reactivity of multiblock copolymer in epoxy composites. Polymer (UK) 92, 222–230 (2016). doi:10.1016/j.polymer.2016.04.003

    Article  Google Scholar 

  4. Kitey, R., Tippur, H.V.: Role of particle size and filler-matrix adhesion on dynamic fracture of glass-filled epoxy. I. Macromeasurements. Acta Mater. 53, 1153–1165 (2005). doi:10.1016/j.actamat.2004.11.012

    Article  Google Scholar 

  5. Kitey, R., Tippur, H.V.: Role of particle size and filler-matrix adhesion on dynamic fracture of glass-filled epoxy. II. Linkage between macro- and micro-measurements. Acta Mater. 53, 1167–1178 (2005). doi:10.1016/j.actamat.2004.11.011

    Article  Google Scholar 

  6. Moloney, A.C., Kausch, H.H., Stieger, H.R.: The fracture of particulate-filled epoxide resins–part 1. J. Mater. Sci. 18, 208–216 (1983). doi:10.1007/BF00543827

    Article  Google Scholar 

  7. Toepperwein, G.N., Karayiannis, N.C., Riggleman, R.A., Kröger, M., De Pablo, J.J.: Influence of nanorod inclusions on structure and primitive path network of polymer nanocomposites at equilibrium and under deformation. Macromolecules 44, 1034–1045 (2011). doi:10.1021/ma102741r

    Article  Google Scholar 

  8. Richardson, D.G., Abrams, C.F.: The effects of nanotube fillers on craze formation in simulated glassy polymers under tensile load. Mol. Simul. 33, 421–427 (2007). doi:10.1080/08927020601154637

    Article  MATH  Google Scholar 

  9. Kambour, R.P.: Structure and properties of crazes in polycarbonate and other glassy polymers. Polymer 5, 143–155 (1964)

    Article  Google Scholar 

  10. Kambour, R.P.: Mechanism of fracture in glassy polymers. III. Direct observation of the craze ahead of the propagating crack in poly(methyl methacrylate) and polystyrene. J. Polym. Sci. Part B Polym. Phys. 4, 349–358 (1966)

  11. Kambour, R.P.: Mechanism of fracture in glassy polymers. II. Survey of crazing response during crack propagation in several polymers. J. Polym. Sci. Part B Polym. Phys. 4, 17–24 (1966)

  12. Knight, A.C.: Stress crazing of transparent plastics. Computed stresses at a nonvoid craze mark. J. Polym. Sci. Part A. Polym. Chem. 3, 1845–1857 (1965)

    Google Scholar 

  13. Lauterwasser, B.D., Kramer, E.J.: Microscopic mechanisms and mechanics of craze growth and fracture. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 39, 469–495 (1979). doi:10.1080/01418617908239285

  14. Wang, W.C.V., Kramer, E.J.: A distributed dislocation stress-analysis for crazes and plastic zones at crack tips. J. Mater. Sci. 17, 2013–2026 (1982). doi:10.1007/Bf00540419

    Article  Google Scholar 

  15. Ungsuwarungsri, T., Knauss, W.G.: A nonlinear analysis of an equilibrium craze: part I–problem formulation and solution. J. Appl. Mech. Trans. ASME 55, 44–51 (1988)

    Article  Google Scholar 

  16. Ungsuwarungsri, T., Knauss, W.G.: A nonlinear analysis of an equilibrium craze: part II–simulations of craze and crack growth. J. Appl. Mech. Trans. ASME 55, 52–58 (1988)

    Article  Google Scholar 

  17. Brown, H.R.: A molecular interpretation of the toughness of glassy polymers. Macromolecules 24, 2752–2756 (1991)

    Article  Google Scholar 

  18. Marissen, R.: Craze growth mechanics. Polymer 41, 1119–1129 (2000). doi:10.1016/S0032-3861(99)00234-7

    Article  Google Scholar 

  19. Hoh, H.J., Xiao, Z.M., Luo, J.: On the plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a circular inclusion. Acta Mech. 210, 305–314 (2010). doi:10.1007/s00707-009-0211-2

    Article  MATH  Google Scholar 

  20. Xiao, Z.M., Chen, B.J.: Stress intensity factor for a Griffith crack interacting with a coated inclusion. Int. J. Fract. 108, 193–205 (2001). doi:10.1023/A:1011066521439

    Article  Google Scholar 

  21. Xiao, Z.M., Chen, B.J.: Stress analysis for a Zener-Stroh crack interacting with a coated inclusion. Int. J. Solids Struct. 38, 5007–5018 (2001). doi:10.1016/S0020-7683(00)00335-8

    Article  MATH  Google Scholar 

  22. Hills, D.A.: Solution of Crack Problems: The Distributed Dislocation Technique. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  23. Kramer, E.J., Hart, E.W.: Theory of slow, steady state crack growth in polymer glasses. Polymer 25, 1667–1678 (1984). doi:10.1016/0032-3861(84)90164-2

    Article  Google Scholar 

  24. Erdogan, F., Gupta, G.D.: Stresses near a flat inclusion in bonded dissimilar materials. Int. J. Solids Struct. 8, 533–547 (1972). doi:10.1016/0020-7683(72)90021-2

    Article  MATH  Google Scholar 

  25. Weertman, J.: Dislocation based Fracture Mechanics. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  26. Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook. Del Research Corporation, Hellertown (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.M., Zhang, W.G., Fan, M. et al. Stress investigation on a cracked craze interacting with a nearby circular inclusion in polymer composites. Acta Mech 228, 1213–1228 (2017). https://doi.org/10.1007/s00707-016-1773-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1773-4

Navigation