Skip to main content
Log in

Vibration analysis of a single-layered graphene sheet-based mass sensor using the Galerkin strip distributed transfer function method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The free vibration of a single-layered graphene sheet (SLGS)-based mass sensor is analyzed using the Galerkin strip distributed transfer function method (GSDTFM) based on the nonlocal Kirchhoff plate theory. The dynamic equations of the SLGS-based mass sensor are formulated, and the semi-analytical solutions of the frequency shift are computed with the GSDTFM. The effects of the nonlocal parameter, the attached nanoparticle locations, the plate side length, as well as the boundary conditions, on the frequency shift are studied. The simulated results show that the frequency shift of the SLGS-based mass sensor becomes smaller when the nonlocal parameter increases. The SLGS-based mass sensor is more sensitive when the attached nanoparticle is closer to the SLGS center or the side length of the SLGS becomes smaller. The boundary conditions strongly affect the frequency shift. Stiffer boundary condition causes larger frequency shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Dresselhaus, M.S., Dresselhaus, G., Jorio, A.: Unusual properties and structure of carbon nanotubes. Ann. Rev. Mater. Res. 34, 247–278 (2004)

    Article  MATH  Google Scholar 

  3. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  4. Poncharal, P., Wang, Z.L., Ugarte, D., Heer, W.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  5. Li, C.Y., Chou, T.W.: Mass detection using carbon nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84, 5246–5248 (2004)

    Article  Google Scholar 

  6. Arash, B., Wang, Q., Duan, W.H.: Detection of gas atoms via vibration of graphenes. Phys. Lett. A 375, 2411–2415 (2011)

    Article  Google Scholar 

  7. Elishakoff, I., Versaci, C., Muscolino, G.: Clamped-free double-walled carbon nanotube-based mass sensor. Acta Mech. 219, 29–43 (2011)

    Article  MATH  Google Scholar 

  8. Joshi, A.Y., Harsha, S.P., Sharma, S.C.: Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors. Phys. E 42, 2115–2123 (2010)

    Article  Google Scholar 

  9. Shen, Z.B., Sheng, L.P., Li, X.F., Tang, G.: Nonlocal timoshenko beam theory for vibration of carbon nanotube-based biosensor. Phys. E 44, 1169–1175 (2012)

    Article  Google Scholar 

  10. Li, X.F., Tang, G.J., Shen, Z.B., Lee, K.Y.: Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics 55, 75–84 (2015)

    Article  Google Scholar 

  11. Li, X.F., Tang, G.J., Shen, Z.B., Lee, K.Y.: Vibration of nonclassical shear beams with Winkler–Pasternak-type restraint. Acta Mech. 223, 953–966 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  13. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  Google Scholar 

  14. Sakhaee-Pour, A., Ahmadian, M.T., Vafai, A.: Potential application of single-layered graphene sheet as strain sensor. Solid State Commun. 147, 336–340 (2008)

    Article  Google Scholar 

  15. Sakhaee-Pour, A., Ahmadian, M.T., Vafai, A.: Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun. 145, 168–172 (2008)

    Article  Google Scholar 

  16. Arash, B., Wang, Q.: Detection of gas atoms with graphene sheets. Comput. Mater. Sci. 60, 245–249 (2012)

    Article  Google Scholar 

  17. He, X.Q., Kitipornchai, S., Liew, K.M.: Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16, 2086–2091 (2005)

    Article  Google Scholar 

  18. Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)

    Article  MATH  Google Scholar 

  19. Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93, 774–779 (2011)

    Article  Google Scholar 

  20. Ansari, R., Sahmani, S., Arash, B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53–62 (2010)

    Article  Google Scholar 

  21. Narendar, S., Gopalakrishnan, S.: Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech. 223, 395–413 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bedroud, M., Hosseini-Hashemi, S., Nazemnezhad, R.: Bucklingof circular/annular mindlin nanoplates via nonlocal elasticity. Acta Mech. 224, 2663–2676 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sarrami-Foroushani, S., Azhari, M.: Nonlocal buckling and vibration analysis of thick rectangular nanoplates using finite strip method based on refined plate theory. Acta Mech. 227, 721–742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, Z.B., Tang, H.L., Li, D.K., Tang, G.J.: Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 61, 200–205 (2012)

    Article  Google Scholar 

  25. Zhou, S.M., Sheng, L.P., Shen, Z.B.: Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 86, 73–78 (2014)

    Article  Google Scholar 

  26. Yang, B., Zhou, J.: Semi-analytic solution of 2D elasticity problem by the strip distributed transfer function method. Int. J. Solids Struct. 33, 3983–4005 (1996)

    Article  MATH  Google Scholar 

  27. Zhou, J., Yang, B.: Strip distributed transfer function method for analysis of plate. Int. J. Numer. Methods Eng. 39, 1915–1932 (1996)

    Article  MATH  Google Scholar 

  28. Eringen, A.C.: On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  29. Eringen, A.C.: Nonlocal continuum field theories. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  30. Lee, H.L., Hsu, J.C., Chang, W.J.: Frequency shift of carbon-nanotube-based mass sensor using nonlocal elasticity theory. Nanoscale Res. Lett. 5, 1774–1778 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Bin Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R.W., Shen, Z.B. & Tang, G.J. Vibration analysis of a single-layered graphene sheet-based mass sensor using the Galerkin strip distributed transfer function method. Acta Mech 227, 2899–2910 (2016). https://doi.org/10.1007/s00707-016-1649-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1649-7

Keywords

Navigation