Skip to main content
Log in

Pseudo-laminarization effect of several types of surfactant solutions in small-sized pipe flows

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Fluid mechanics at a very small scale, particularly micro-flows and nano-flows, have many technical applications, and the elastic properties of small-scale flows are strongly expressed even for dilute aqueous solutions of non-Newtonian fluids. We have investigated the flow properties of water and several types of surfactant solutions with spherical or rod-like micelles. Before the flow property investigations, Newtonian and non-Newtonian viscosities for the test fluids were observed by using a capillary viscosity meter. Pressure drops were experimentally measured, and the frictional coefficient of the pipe was estimated in flows through capillaries ranging from 133 \(\upmu \)m to 2.87 mm in diameter. For water flow, good agreement was obtained between the experimental results and the predictions for Hagen–Poiseuille flow and the Blasius expression. The flow properties of the spherical micelle surfactant solutions agreed with those of water. However, the rod-like micelle surfactant solutions maintained laminar flows in the transition regions. Thus, a pseudo-laminarization effect for surfactant solutions with rod-like micelles is indicated. A relationship between these experimental results and estimated first normal stress differences is also strongly suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Molar concentration (mol/L)

\(C_{m}\) :

Mass concentration (wt%)

D :

Diameter of capillary (mm, \(\upmu \)m)

DR :

Drag reduction rate (\(-\))

k :

Gradient in plotting log (\(T_{M} - T_{m}\)) against log \(SR_{w}\) (\(-\))

L :

Capillary length (mm)

m :

Dilatant viscosity (Pa s\(^{n}\))

n :

Power law index (\(-\))

\(N_{1}\) :

First normal stress difference (Pa)

Q :

Flow rate (m\(^{3}\)/s)

Re :

Reynolds number (\(-\))

\(Re^{*}\) :

Generalized Reynolds number (\(-\))

\(Re_{c}\) :

Critical Reynolds number (\(-\))

\(SR_{c}\) :

Critical shear rate on wall (s\(^{-1}\))

\(SR_{w}\) :

Shear rate on wall (s\(^{-1}\))

T :

Temperature (\({}^\circ \mathrm {C}\))

\(T_{M}\) :

Theoretical outlet momentum (N)

\(T_{m}\) :

Jet thrust (N)

\(\varDelta p\) :

Pressure drop (Pa)

\(\uplambda \) :

Frictional coefficient of pipe (\(-\))

\(\mu \) :

Newtonian viscosity (Pa s)

\(\rho \) :

Density (kg/m\(^{3}\))

\(\sigma _{i}\) :

Interfacial tension (mN/m)

\(\tau _{w}\) :

Wall shear stress (Pa)

\(\varphi \) :

Molar concentration ratio (\(-\))

a :

Arquad (surfactant)

\({ exp}.\) :

Experimental value

e :

Ethoquad (surfactant)

n :

NaSal (counterion)

\({ pre}.\) :

Predicted value

References

  1. Toms, B.A.: Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In: Proceedings of the 1st International Congress on Rheology, Vol. 2, pp. 135–141 (1948)

  2. Rose, G.D., Foster, K.L.: Drag reduction and rheological properties of cationic viscoelastic surfactant formulations. J. Nonnewton. Fluid Mech. 31, 59–85 (1989)

    Article  Google Scholar 

  3. Myska, J., Zakin, J.L.: Differences in the flow behaviors of polymeric and cationic surfactant drag-reducing additives. Ind. Eng. Chem. Res. 36, 5483–5487 (1997)

    Article  Google Scholar 

  4. Usui, H., Itoh, T., Saeki, T.: On pipe diameter effects in surfactant drag-reducing pipe flows. Rheol. Acta 37, 122–128 (1998)

    Article  Google Scholar 

  5. Zhang, Y., Schmidt, J., Talmon, Y., Zakin, J.L.: Co-solvent effects on drag reduction, rheological properties and micelle microstructures of cationic surfactants. J. Colloid Interface Sci. 286, 696–7009 (2005)

    Article  Google Scholar 

  6. Lu, J., Fernandez, A., Tryggvason, G.: The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17, 095102 (2005)

    Article  MATH  Google Scholar 

  7. Skudarnov, P.V., Lin, C.X.: Drag reduction by gas injection into turbulent boundary layer: density ratio effect. Int. J. Heat Fluid Flow 27, 436–444 (2006)

    Article  Google Scholar 

  8. Ceccio, S.L.: Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183–203 (2010)

    Article  Google Scholar 

  9. Harwigsson, I., Hellsten, M.: Environmentally acceptable drag-reducing surfactants for district heating and cooling. J. Am. Oil. Chem. Soc. 73, 951–928 (1996)

    Article  Google Scholar 

  10. Tuan, N.A., Mizunuma, H.: Laminar and turbulent impinging jet in drag reducing surfactant solutions. Nihon Reoroji Gakkaishi 41, 67–73 (2013)

    Article  Google Scholar 

  11. Tuan, N.A., Mizunuma, H.: High-shear drag reduction of surfactant solutions. J. Non-Newton Fluid Mech. 198, 71–77 (2013)

    Article  Google Scholar 

  12. Tuan, N.A., Mizunuma, H.: Advection of shear-induced surfactant threads and turbulent drag reduction. J. Rheol. 57, 1819–1832 (2013)

    Article  Google Scholar 

  13. Serizawa, A., Inui, T., Yahiro, T., Kawara, Z.: Pseudo-laminarization of micro-bubble containing milky bubbly flow in a pipe. Multiphase Sci. Technol. 17, 79–101 (2005)

    Article  Google Scholar 

  14. Hasegawa, T., Ushida, A., Narumi, T.: Huge reduction in pressure drop of water, glycerol/water mixture, and aqueous solution of polyethylene oxide in high speed flows through micro-orifices. Phys. Fluids 21, 052002 (2009)

    Article  MATH  Google Scholar 

  15. Lu, B., Zheng, Y., Davis, H.T., Scriven, L.E., Talmon, Y., Zakin, J.L.: Effect of variations in counterion to surfactant ratio on rheology and microstructures of drag reducing cationic surfactant systems. Rheol. Acta 37, 528–548 (1998)

    Article  Google Scholar 

  16. Ogata, S., Watanabe, K.: Limiting maximum drag-reduction asymptote for the moment coefficient of a rotating disk in drag-reducing surfactant solution. J. Fluid Mech. 457, 325–337 (2002)

    Article  MATH  Google Scholar 

  17. Zhang, J., Manglik, R.M.: Effect of ethoxylation and molecular weight of cationic surfactants on nucleate boiling in aqueous solutions. ASME J. Heat Transf. 126, 34–42 (2004)

    Article  Google Scholar 

  18. Shikata, T., Hirata, H., Kotaka, T.: Micelle formation of detergent molecules in aqueous media: viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions. Langmuir 3, 1081–1086 (1987)

    Article  Google Scholar 

  19. Shikata, T., Hirata, H., Kotaka, T.: Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4, 354–359 (1988)

    Article  Google Scholar 

  20. Shikata, T., Hirata, H., Kotaka, T.: Micelle formation of detergent molecules in aqueous media. 3. Viscoelastic properties of aqueous cetyltrimethylammonium bromide-salicylic acid solutions. Langmuir 5, 398–405 (1989)

    Article  Google Scholar 

  21. Shikata, T., Dahman, S.J., Pearson, D.S.: Rheo-optical behavior of wormlike micelles. Langmuir 10, 3470–3476 (1994)

    Article  Google Scholar 

  22. Shikata, T., Imai, S.: Dielectric relaxation of surfactant micellar solutions. Langmuir 14, 6804–6810 (1998)

    Article  Google Scholar 

  23. Karasawa, M., Hasegawa, T., Komaki, M., Narumi, T.: Washing method by introducing air into an alternating flow system. J. Oleo Sci. 55, 521–527 (2006)

    Article  Google Scholar 

  24. Ohlendorf, D., Interthal, W., Hoffmann, H.: Surfactant systems for drag reduction: physico-chemical properties and rheological behavior. Rheol. Acta 25, 468–486 (1986)

    Article  Google Scholar 

  25. Warholic, M.D., Schmidt, G.M., Hanratty, T.J.: The influence of a drag-reducing surfactant on a turbulent velocity field. J. Fluid Mech. 388, 1–20 (1999)

    Article  MATH  Google Scholar 

  26. Drappier, J., Divoux, T., Amarouchene, Y., Bertrand, F., Rodts, S., Cadot, O., Bonn, D.: Turbulent drag reduction by surfactants. Europhys. Lett. 74, 362–368 (2006)

    Article  Google Scholar 

  27. Harris, J.: A note on the generalized Reynolds number in non-Newtonian flow. Br. J. Appl. Phys. 14, 817–818 (1963)

    Article  Google Scholar 

  28. Pfahler, J., Harley, J., Bau, H., Zemel, J.: Liquid transport in micron and submicron channels. Sensors Actuators A Phys. 22, 431–434 (1989)

    Article  Google Scholar 

  29. Peng, X.F., Peterson, G.P.: Convective heat transfer and flow friction for water flow in microchannel structures. Int. J. Heat Mass Transf. 39, 2599–2608 (1996)

    Article  Google Scholar 

  30. Tanford, C.: Micelle shape and size. J. Phys. Chem. 76, 3020–3024 (1972)

    Article  Google Scholar 

  31. Hayashi, S., Ikeda, S.: Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions. J. Phys. Chem. 84, 744–751 (1980)

    Article  Google Scholar 

  32. Schulz, P.C.: Steric fitting of the spherical micelle size. Colloid Polym. Sci. 269, 612–619 (1991)

    Article  Google Scholar 

  33. Ptasinski, P.K., Nieuwstadt, F.T.M., van den Brule, B.H.A.A., Hulsen, M.A.: Experiments in turbulent pipe flow with polymer additives at maximum drag reduction. Flow Turbul. Combust. 66, 159–182 (2001)

    Article  MATH  Google Scholar 

  34. Li, F.C., Kawaguchi, Y., Hishida, K.: Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow. Phys. Fluids 16, 3281–3295 (2004)

    Article  MATH  Google Scholar 

  35. Frohnapfel, B., Lammers, P., Jovanović, J., Durst, F.: Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech. 577, 457–466 (2007)

    Article  MATH  Google Scholar 

  36. Min, T., Yoo, J.Y., Choi, H., Joseph, D.D.: Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213–238 (2003)

    Article  MATH  Google Scholar 

  37. Hasegawa, T., Asama, H., Narumi, T.: A simple method for measuring elastic stresses by jet thrust and some characteristics of tube flows. Nihon Reoroji Gakkaishi 31, 243–252 (2003)

    Article  Google Scholar 

  38. Dimitropoulos, C.D., Dubief, Y., Shaqfeh, E.S., Moin, P., Lele, S.K.: Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow. Phys. Fluids 17, 011705 (2005)

    Article  MATH  Google Scholar 

  39. Yang, S.Q.: Drag reduction in turbulent flow with polymer additives. ASME J. Fluids Eng. 131, 051301 (2009)

    Article  Google Scholar 

  40. Suzuki, H., Hidema, R., Komoda, Y.: Flow characteristics in a micro-cavity swept by a visco-elastic fluid. Exp. Thermal Fluid Sci. 67, 96–101 (2015)

    Article  Google Scholar 

  41. Hasegawa, T., Watanabe, H., Sato, T., Watanabe, M., Takahashi, M., Narumi, T., Tiu, C.: Anomalous reduction in thrust/reaction of water jets issuing from microapertures. Phys. Fluids 19, 053102 (2007)

    Article  MATH  Google Scholar 

  42. Ushida, A., Hasegawa, T., Hoshina, T., Kudou, S., Uchiyama, H., Narumi, T.: Measurement and observation of jet thrust for water flow through micro-orifice. ASME J. Fluids Eng. 134, 081201 (2012)

    Article  Google Scholar 

  43. Munekata, M., Matsuzaki, K., Ohba, H.: Vortex motion in a swirling flow of surfactant solution with drag reduction. ASME J. Fluids Eng. 128, 101–106 (2006)

    Article  Google Scholar 

  44. Tamano, S., Itoh, M., Hotta, S., Yokota, K.: Effects of rheological properties on drag reduction in turbulent boundary layer of viscoelastic fluids. Trans. Jpn. Soc. Mech. Eng. B 75, 227–234 (2009)

    MATH  Google Scholar 

  45. Thais, L., Gatski, T.B., Mompean, G.: Analysis of polymer drag reduction mechanisms from energy budgets. Int. J. Heat Fluid Flow 43, 52–61 (2013)

    Article  Google Scholar 

  46. Tabor, M., De Gennes, P.G.: A cascade theory of drag reduction. Europhys. Lett. 2, 519–522 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiomi Ushida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushida, A., Ichijo, A., Sato, T. et al. Pseudo-laminarization effect of several types of surfactant solutions in small-sized pipe flows. Acta Mech 227, 2061–2074 (2016). https://doi.org/10.1007/s00707-016-1616-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1616-3

Keywords

Navigation