Skip to main content
Log in

Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Water-hammer control strategies constitute an essential and critical task for both hydraulic designers and manufacturers to ensure the global economic efficiency and safety operations of hydraulic utilities. The primary objective of this paper is to present an alternative strategy to control water-hammer up- and down-surges, induced into a steel piping system. The proposed technique is based on replacing a short-section of the transient sensitive regions of the existing piping system by another one made of polymeric material. Two types of polymeric materials, used for the short-section and including high- or low-density polyethylene (HDPE) or (LDPE), are addressed in this study. The 1-D pressurized-pipe flow model is used to describe the hydraulic system, along with the Ramos formulation, based on two decay coefficients being used for considering the pipe-wall viscoelastic behavior and unsteady friction effects. Numerical computations were performed using the fixed-grid method of characteristics. The efficiency of the numerical model is first verified against experimental data available from the literature. Thereafter, critical flow scenarios relating to water-hammer up- and down-surges, including a cavitating flow, are revealed and discussed to point out the efficiency of the used protection technique. From the case studied, it is found that such a technique could mitigate critical water-hammer surges and, hence, might greatly enhance the reliability of the industrial hydraulic systems and urban water utilities, while safeguarding operators. Despite the available protection measures, the utilized technique can substantially soften both up- and down-surge waves induced by severe water-hammer events. It is also found that the amortization of pressure rise and pressure drop is slightly more important for the case of a short-section made of LDPE polymeric material than that using an HDPE polymeric material. It is also observed that other factors contributing to the damping rate depended upon the short-section length and diameter. In fact, the examination of the pressure peak magnitude sensitivity, with the short-section length and diameter being the controlling variables, provides optimum values of these parameters for sizing the replaced polymeric short-section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area of the pipe (m2)

a 0 :

Elastic wave speed (m/s)

\({{\tilde{a}}_0 }\) :

Adjusted elastic wave speed (m/s)

Cr :

Courant number (–)

D :

Main-pipe inner diameter (m)

d short-section :

Diameter of the polymeric short-section (m)

E 0 :

Dynamic modulus (Young’s modulus) of pipe elasticity (Pa)

e :

Pipe-wall thickness (m)

f :

Darcy–Weisbach friction factor (–)

g :

Gravity acceleration (m/s2)

h f :

Head loss per unit length (–)

\({H=p/\gamma +z }\) :

Piezometric-head (m)

J 0 :

Instantaneous or elastic creep-compliance (Pa−1)

K :

Bulk modulus of elasticity of the fluid (Pa)

k r1, k r2 :

Ramos’s unsteady decay coefficients (–)

L :

Length of the main-piping system (m)

l main-pipe :

Length of the modified steel pipe (m)

l short-section :

Length of the polymeric short-section (m)

\({p^{\ast} }\) :

Absolute pressure (Pa)

\({p_{\rm sat} }\) :

Liquid saturation pressure (Pa)

Q :

Flow rate (m3/s)

Q d :

Average flow at downstream the air cavity during \({2\Delta t}\) period (m3/s)

\({R=\frac{f}{2gD} }\) :

Pipeline resistance coefficient (–)

t :

Time (s)

x :

Coordinate along the pipe axis (m)

z :

Elevation or pipe axis elevation (m)

\({\alpha }\) :

Dimensionless parameter (–)

\({\alpha _0 }\) :

Pressure-dependent volumetric ratio of gas in mixture (void fraction) (–)

\({\Delta t }\) :

Time-step increment (s)

\({\Delta x }\) :

Space-step increment (m)

\({\rho }\) :

Fluid density (kg/m3)

\({{\nu }'}\) :

Kinematic fluid viscosity (m2/s)

\({\psi }\) :

Numerical weighting factor (–)

\({\theta }\) :

Relaxation coefficient for the local acceleration numerical scheme (–)

\({\forall }\) :

Volume of cavity (m3)

0:

Steady state

i :

Section index

ns :

Number of sections

g :

Gas

j :

Pipe index

np :

Number of pipes

References

  1. Bergant A., Simpson A.R., Tijsseling A.: Waterhammer with column separation: a historical review. J. Fluids Struct. 22, 135–171 (2006). doi:10.1016/j.jfluidstructs.2005.08.008

    Article  Google Scholar 

  2. Pejovic S., Boldy A.P., Obradovic D.: Guidelines to Hydraulic Transient Analysis. Technical Press, Brookfield (1987)

    Google Scholar 

  3. Kaveh H.A., Faig B.O.N., Akbar K.H.: Some aspects of physical and numerical modeling of water-hammer in pipelines. Nonlinear Dyn. 60, 677–701 (2010). doi:10.1007/s11071-009-9624-7

    Article  MATH  Google Scholar 

  4. Riasi, A., Nourbakhsh, A.: Influence of surge tank and relief valve on transient flow behaviour in hydropower stations. In: The 11th International Symposium on Fluid Power ASME–JSME–KSME Conference (2011). doi:10.1115/AJK2011-07034

  5. Mosab E., Samuel Oduro K.A.: Transient Analysis in Piping Networks. Virginia Polytechnic Institute and State University, Blacksburg, Virginia (2007)

    Google Scholar 

  6. Boulos P.F., Karney B.W., Wood D.J., Lingireddy S.: Hydraulic transient guidelines for protecting water distribution systems. Am. Water Works Assoc. 97, 111–124 (2005)

    Google Scholar 

  7. Pothof, I., Karney, B.: Guidelines for transient analysis in water transmission and distribution systems. Water Supply Syst. Anal. InTech (2012). doi:10.5772/53944

  8. Boulos P.F., Karney B.W., Wood D.J., Lingireddy S.: Pressure vessels and piping systems—Shock and water-hammer loading. Am. Water Works Assoc. 97, 111–124 (2005). doi:10.1080/00221686.2004.9641209

    Google Scholar 

  9. Massouh F., Comolet R.: Étude d’un système anti-bélier en ligne-study of a water-hammer protection system in line. La Houille Blanche 5, 355–362 (1984). doi:10.1051/lhb/1984023

    Article  Google Scholar 

  10. Soares A., Covas D., Carri#x00E7;o N.: Transient vaporous cavitation in viscoelastic pipes. J. Hydraul. Res. 50, 228–235 (2012). doi:10.1080/00221686.2012.669143

    Article  Google Scholar 

  11. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, Berlin (2008). doi:10.1007/978-0-387-73861-1

  12. Ramos H., Covas D., Borga A., Loureiro D.: Surge damping analysis in pipe systems: modelling and experiments. J. Hydraul. Res. 42, 413–425 (2004). doi:10.1080/00221686.2004.9641209

    Article  Google Scholar 

  13. Triki A.: A finite element solution of the unidimensional shallow-water equation. J. Appl. Mech. ASME 19, 1124–1130 (2013). doi:10.1061/(ASCE)HE.1943-5584.000089

    Google Scholar 

  14. Triki A.: Multiple-grid finite element solution of the shallow water equations: water-hammer phenomenon. Comput. Fluids 90, 65–71 (2014). doi:10.1016/j.compfluid.2013.11.007

    Article  MathSciNet  Google Scholar 

  15. Triki, A.: Resonance of free-surface waves provoked by floodgate maneuvers. J. Hydrol. Eng. ASCE, 80, 021001-1 (2014). doi:10.1115/1.40074245

  16. Wylie E.B., Streeter V.L.: Fluid Transients in Systems. Prentice Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  17. Ghidaoui M.S., Zhao M., Duncan A.M., David H.A.: A review of water-hammer theory and practice. Appl. Mech. Rev. 58, 49–76 (2005)

    Article  Google Scholar 

  18. Chaudhry M.H.: Applied Hydraulic Transient. Van Nostrand Reinhold Company, New York (2014)

    Book  Google Scholar 

  19. Brunone, B., Golia, U.M., Greco, M.: Modeling of Fast Transients by Numerical Methods. In: Proceedings of the 9th International Conference on Hydraulic Transients with Water Column Separation, Valencia, Spain, 273–281 (1991)

  20. Vitkovsky, J.P., Lambert, M.F., Simpson, A.R., Bergant, A.: Advances in unsteady friction modelling in transient pipe flow. In; In the 8th International Conference on Pressure Surges, BHR, The Hague, The Netherlands (2000)

  21. Szymkiewicz R., Mitosek M.: Numerical aspects of improvement of the unsteady pipe flow equations. Int. J. Numer. Methods Fluids 55, 1039–1058 (2007). doi:10.1002/fld.1507

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghidaoui M.S., Karney B.W.: Equivalent differential equations in fixed grid characteristics method. J. Hydraul. Eng. 120, 1159–1175 (1994). doi:10.1061/(ASCE)0733-9429(1994)120:10(1159)

    Article  Google Scholar 

  23. Lewandowski M., Adamkowski A.: Investigation of hydraulic transients in a pipeline with column separation. J. Hydraul. Eng. 138, 935–944 (2012). doi:10.1061/(ASCE)HY.1943-7900.0000596

    Article  Google Scholar 

  24. Bergant A., Simpson A.: Pipeline column separation flow regimes. J. Hydraul. Eng. ASCE 125, 835–848 (1999). doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Triki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triki, A. Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section. Acta Mech 227, 777–793 (2016). https://doi.org/10.1007/s00707-015-1493-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1493-1

Keywords

Navigation