Skip to main content
Log in

Modeling trabecular bone adaptation to local bending load regulated by mechanosensing osteocytes

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Cancellous bone has a complicated three-dimensional porous microstructure that consists of strut-like or plate-like trabeculae. The arrangement of the trabeculae is remodeled throughout the organism’s lifetime to functionally adapt to the surrounding mechanical environment. During bone remodeling, osteocytes buried in the bone matrix are believed to play a pivotal role as mechanosensory cells and help regulate the coupling of osteoclastic bone resorption and osteoblastic bone formation according to the mechanical stimuli. Previously, we constructed a mathematical model of trabecular bone remodeling incorporating cellular mechanosensing and intercellular signal transmission, in which osteocytes are assumed to sense the flow of interstitial fluid as a mechanical stimulus that regulates bone remodeling. Our remodeling simulation could describe the reorientation of a single strut-like trabecula under uniaxial loading. In the present study, to investigate the effects of a bending load on trabecular bone remodeling, we simulated the morphological change in a single trabecula under a cyclic bending load based on our mathematical model. The simulation results showed that the application of the bending load influences not only the formation of the plate-like trabecula but also the changes in trabecular topology. These results suggest the possibility that the characteristic trabecular morphology, such as the strut-like or plate-like form, is determined depending on the local mechanical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi T., Aonuma Y., Taira K., Hojo M., Kamioka H.: Asymmetric intercellular communication between bone cells: propagation of the calcium signaling. Biochem. Biophys. Res. Commun. 389, 495–500 (2009)

    Article  Google Scholar 

  2. Adachi T., Kameo Y., Hojo M.: Trabecular bone remodeling simulation considering osteocytic response to fluid-induced shear stress. Phil. Trans. R. Soc. A 368, 2669–2682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adachi T., Tsubota K., Tomita Y., Hollister S.J.: Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J. Biomech. Eng. 123, 403–409 (2001)

    Article  Google Scholar 

  4. Beno T., Yoon Y.J., Cowin S.C., Fritton S.P.: Estimation of bone permeability using accurate microstructural measurements. J. Biomech. 39, 2378–2387 (2006)

    Article  Google Scholar 

  5. Bonewald L.F., Johnson M.L.: Osteocytes, mechanosensing and Wnt signaling. Bone 42, 606–615 (2008)

    Article  Google Scholar 

  6. Burger E.H., Klein-Nulend J.: Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J. 13, S101–S112 (1999)

    Google Scholar 

  7. Cowin S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  8. Cowin S.C., Moss-Salentijn L., Moss M.L.: Candidates for the mechanosensory system in bone. J. Biomech. Eng. 113, 191–197 (1991)

    Article  Google Scholar 

  9. Frost H.M.: Bone “mass” and the “mechanostat”: a proposal. Anat. Rec. 219, 1–9 (1987)

    Article  Google Scholar 

  10. Frost H.M.: Bone’s mechanostat: a 2003 update. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 275, 1081–1101 (2003)

    Article  Google Scholar 

  11. Han Y., Cowin S.C., Schaffler M.B., Weinbaum S.: Mechanotransduction and strain amplification in osteocyte cell processes and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 101, 16689–16694 (2004)

    Article  Google Scholar 

  12. Huiskes R., Ruimerman R., Van Lenthe G.H., Janssen J.D.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704–706 (2000)

    Article  Google Scholar 

  13. Huo B., Lu X.L., Hung C.T., Costa K.D., Xu Q., Whitesides G.M., Guo X.E.: Fluid flow induced calcium response in bone cell network. Cell. Mol. Bioeng. 1, 58–66 (2008)

    Article  Google Scholar 

  14. Jaworski Z.F., Lok E.: The rate of osteoclastic bone erosion in haversian remodeling sites of adult dogs rib. Calcif. Tissue Res. 10, 103–112 (1972)

    Article  Google Scholar 

  15. Kameo Y., Adachi T., Hojo M.: Transient response of fluid pressure in a poroelastic material under uniaxial cyclic loading. J. Mech. Phys. Solids 56, 1794–1805 (2008)

    Article  MATH  Google Scholar 

  16. Kameo Y., Adachi T., Hojo M.: Fluid pressure response in poroelastic materials subjected to cyclic loading. J. Mech. Phys. Solids 57, 1815–1827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kameo Y., Adachi T., Hojo M.: Estimation of bone permeability considering the morphology of lacuno-canalicular porosity. J. Mech. Behav. Biomed. Mater. 3, 240–248 (2010)

    Article  Google Scholar 

  18. Kameo Y., Adachi T., Hojo M.: Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation. J. Mech. Behav. Biomed. Mater. 4, 900–908 (2011)

    Article  Google Scholar 

  19. Kamioka H., Kameo Y., Imai Y., Bakker A.D., Bacabac R.G., Yamada N., Takaoka A., Yamashiro T., Adachi T., Klein-Nulend J.: Microscale fluid flow analysis in human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integr. Biol. 4, 1198–1206 (2012)

    Article  Google Scholar 

  20. Kamioka H., Honjo T., Takano-Yamamoto T.: A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interface contrast microscopy. Bone 28, 145–149 (2001)

    Article  Google Scholar 

  21. Knothe Tate M.L., Knothe U., Niederer P.: Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. Am. J. Med. Sci. 316, 189–195 (1998)

    Article  Google Scholar 

  22. Majumdar S., Kothari M., Augat P., Newitt D.C., Link T.M., Lin J.C., Lang T., Lu Y., Genant H.K.: High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22, 445–454 (1998)

    Article  Google Scholar 

  23. McNamara L.M., Prendergast P.J.: Bone remodelling algorithms incorporating both strain and microdamage stimuli. J. Biomech. 40, 1381–1391 (2007)

    Article  Google Scholar 

  24. Müller R., Hildebrand T., Rüegsegger P.: Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys. Med. Biol. 39, 145–164 (1994)

    Article  Google Scholar 

  25. Osher S., Sethian J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Parfitt A.M.: Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 55, 273–286 (1994)

    Article  Google Scholar 

  27. Smit T.H., Huyghe J.M., Cowin S.C.: Estimation of the poroelastic parameters of cortical bone. J. Biomech. 35, 829–835 (2002)

    Article  Google Scholar 

  28. Sugawara Y., Kamioka H., Honjo T., Tezuka K., Takano-Yamamoto T.: Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone 36, 877–883 (2005)

    Article  Google Scholar 

  29. Tatsumi S., Ishii K., Amizuka N., Li M.Q., Kobayashi T., Kohno K., Ito M., Takeshita S., Ikeda K.: Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 5, 464–475 (2007)

    Article  Google Scholar 

  30. Tsubota K., Adachi T.: Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. Med. Eng. Phys. 27, 305–311 (2005)

    Article  Google Scholar 

  31. Tsubota K., Suzuki Y., Yamada T., Hojo M., Makinouchi A., Adachi T.: Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: approach to understanding Wolff’s law. J. Biomech. 42, 1088–1094 (2009)

    Article  Google Scholar 

  32. Wang Y., McNamara L.M., Schaffler M.B., Weinbaum S.: A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc. Natl. Acad. Sci. USA 104, 15941–15946 (2007)

    Article  Google Scholar 

  33. Weinbaum S., Cowin S.C., Zeng Y.: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994)

    Article  Google Scholar 

  34. You L.D., Cowin S.C., Schaffler M.B., Weinbaum S.: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34, 1375–1386 (2001)

    Article  Google Scholar 

  35. You L.D., Weinbaum S., Cowin S.C., Schaffler M.B.: Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A 278, 505–513 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Kameo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameo, Y., Adachi, T. Modeling trabecular bone adaptation to local bending load regulated by mechanosensing osteocytes. Acta Mech 225, 2833–2840 (2014). https://doi.org/10.1007/s00707-014-1202-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1202-5

Keywords

Navigation