Skip to main content
Log in

Transversely isotropic nonlinear magneto-active elastomers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Magneto-active elastomers are smart materials composed of a rubber-like matrix material containing a distribution of magneto active particles. The large elastic deformations possible in the rubber-like matrix allow the mechanical properties of magneto-active elastomers to be changed significantly by the application of external magnetic fields. In this paper, we provide a theoretical basis for the description of the nonlinear properties of a particular class of these materials, namely transversely isotropic magneto-active elastomers. The transversely isotropic character of these materials is produced by the application of a magnetic field during the curing process, when the magneto active particles are distributed within the rubber. As a result the particles are aligned in chains that generated a preferred direction in the material. Available experimental data suggest that this enhances the stiffness of the material in the presence of an external magnetic field by comparison with the situation in which no external field is applied during curing, which leads to an essentially random (isotropic) distribution of particles. Herein, we develop a general form of the constitutive law for such magnetoelastic solids. This is then used in the solution of two simple problems involving homogeneous deformations, namely simple shear of a slab and simple tension of a cylinder. Using these results and the experimental available data we develop a prototype constitutive equation, which is used in order to solve two boundary-value problems involving non-homogeneous deformations—the extension and inflation of a circular cylindrical tube and the extension and torsion of a solid circular cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farshad M., Le Roux M.: A new active noise abatement barrier system. Polym. Test. 23, 855–860 (2004)

    Article  Google Scholar 

  2. Jolly M.R., Carlson J.D., Muñoz B.C.: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607–614 (1996)

    Article  Google Scholar 

  3. Kari L., Blom P.: Magneto-sensitive rubber in a noise reduction context-exploring the potential. Plast. Rubber Compos. 34, 365–371 (2005)

    Article  Google Scholar 

  4. Bellan C., Bossis G.: Field dependence of viscoelastic properties of MR elastomers. Int. J. Mod. Phys. B 16, 2447–2453 (2002)

    Article  Google Scholar 

  5. Bossis G., Abbo C., Cutillas S.: Electroactive and electrostructured elastomers. Int. J. Mod. Phys. B 15, 564–573 (2001)

    Article  Google Scholar 

  6. Farshad M., Benine A.: Magnetoactive elastomer composites. Polym. Test. 23, 347–357 (2004)

    Article  Google Scholar 

  7. Farshad M., Le Roux M.: Compression properties of magnetostrictive polymer composite gels. Polym. Test. 24, 163–168 (2005)

    Article  Google Scholar 

  8. Ginder J.M., Nichols M.E., Elie L.D., Tardiff J.L.: Magnetorheological elastomers: properties and applications. Proc. Smart Struct. Mater. SPIE 3675, 131–138 (1999)

    Google Scholar 

  9. Varga Z., Filipcsei G., Szilággi A., Zríngi M.: Electric and magnetic field-structured smart composites. Macromol. Symp. 227, 123–133 (2005)

    Article  Google Scholar 

  10. Varga Z., Filipcsei G., Zríngi M.: Magnetic field sensitive functional elastomers with tuneable modulus. Polymer 47, 227–233 (2006)

    Article  Google Scholar 

  11. Dorfmann A., Ogden R.W.: Magnetoelastic modelling of elastomer. Eur. J. Mech. A/Solids 22, 497–507 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dorfmann A., Ogden R.W.: Nonlinear magnetoelastic deformations. Q. J. Mech. Appl. Math. 57, 599–622 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dorfmann A., Ogden R.W.: Nonlinear magnetoelastic deformations of elastomers. Acta Mech. 167, 13–28 (2003)

    Article  Google Scholar 

  14. Dorfmann A., Ogden R.W., Saccomandi G.: The effect of rotation on the nonlinear magnetoelastic response of a circular cylindrical tube. Int. J. Solids Struct. 42, 3700–3715 (2005)

    Article  MATH  Google Scholar 

  15. Dorfmann A., Ogden R.W.: Some problems in nonlinear magnetoelasticity. Z. Angew. Math. Phys. 56, 718–745 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brown W.F.: Magnetoelastic Interactions. Springer, Berlin (1966)

    Google Scholar 

  17. Hutter K.: On thermodynamics and thermostatics of viscous thermoelastic solids in the electromagnetic fields. A Lagrangian formulation. Arch. Rat. Mech. Anal. 54, 339–366 (1975)

    Article  MathSciNet  Google Scholar 

  18. Hutter K.: A thermodynamic theory of fluids and solids in the electromagnetic fields. Arch. Rat. Mech. Anal. 64, 269–289 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eringen A.C., Maugin G.A.: Electrodynamics of Continua I. Foundations and Solid Media. Springer, Berlin (1990)

    Google Scholar 

  20. Kovetz A.: Electromagnetic Theory. Oxford University Press, NY (2000)

    MATH  Google Scholar 

  21. Hutter, K., van de Ven , A.A.: Field Matter Interactions in Thermoelastic Solids. Lectures Notes in Physics vol. 88. Springer, Berlin (1978)

  22. Pao, Y. H.: Electromagnetic forces in deformable continua. In: Nemat-Nasser S. (ed.), Mechanics Today, vol. 4, pp. 209–306 (1978)

  23. Borcea L., Bruno O.: On the magneto-elastic properties of elastomer-ferromagnet composites. J. Mech. Phys. Solids 49, 2877–2919 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yin H.M., Sun L.Z., Chen J.S.: Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles. J. Mech. Phys. Solids 54, 975–1003 (2006)

    Article  MATH  Google Scholar 

  25. Kankanala S.V., Triantafyllidis N.: On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 52, 2869–2908 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bustamante, R.: Transversely isotropic non-linear electro-active elastomers. Acta Mech. doi:10.1007/s00033-007-7145-0 (2008)

  27. Singh M., Pipkin A.C.: Controllable states of elastic dielectrics. Arch. Rat. Mech. Anal. 21, 169–210 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pucci E., Saccomandi G.: On the controllable states of elastic dielectric and magnetoelastic solids. Int. J. Eng. Sci. 31, 251–256 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bustamante R., Dorfmann A., Ogden R.W.: Universal relations in isotropic nonlinear magnetoelasticity. Q. J. Mech. Appl. Math. 59, 435–450 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bustamante, R.: Mathematical modelling of non-linear magneto- and electro-elastic rubber-like materials. Ph.D. thesis, University of Glasgow (2007)

  31. Ogden R.W.: Non-linear elastic deformations. Dover, New York (1997)

    Google Scholar 

  32. Steigmann D.J.: Equilibrium theory for magnetic elastomers and magnetoelastic membranes. Int. J. Non Linear Mech. 39, 1193–1216 (2004)

    Article  MATH  Google Scholar 

  33. Bustamante R., Dorfmann A., Ogden R.W.: On variational formulations in nonlinear magnetoelastostatics. Math. Mech. Solids 13, 725–745 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (eds) Continuum Physics, vol. 1, pp. 239–353. Academic, New York (1971)

    Google Scholar 

  35. Zheng Q.S.: Theory of representations for tensor functions. A unified invariant approach to constitutive equations. Appl. Mech. Rev. 47, 545–587 (1994)

    Article  Google Scholar 

  36. Maugin, G.A.: Continuum mechanics of Electromagnetic Solids. North Holland Series in Applied Mathematics and Mechanics, vol. 33. Elsevier, Amsterdam (1988)

  37. Brigadnov I.A., Dorfmann A.: Mathematical modeling of magneto-sensitive elastomers. Int. J. Solids Struct. 40, 4659–4674 (2003)

    Article  MATH  Google Scholar 

  38. Bustamante R., Dorfmann A., Ogden R.W.: A nonlinear magnetoelastic tube under extension and inflation in an axial magnetic field: numerical solution. J. Eng. Math. 59, 139–153 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Saccomandi, G., Ogden, R. W. (eds.): Mechanics and Thermomechanics of Rubberlike Solids. CISM Courses and Lectures Series, vol. 452. Springer, Wien (2004)

  40. Merodio J., Ogden R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 40, 4704–4727 (2003)

    MathSciNet  Google Scholar 

  41. Merodio J., Ogden R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastics solids. Int. J. Non Linear Mech. 40, 213–227 (2005)

    Article  MATH  Google Scholar 

  42. Jiang X., Ogden R.W.: On azimuthal shear of a circular cylindrical tube of compressible elastic material. Q. J. Mech. Appl. Math. 51, 143–158 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Varga Z., Filipcsei G., Zríngi M.: Smart composites with controlled anisotropy. Polymer 46, 7779–7787 (2005)

    Article  Google Scholar 

  44. Bustamante, R.: Mathematical modelling of boundary conditions for magneto-sensitive elastomers: variational formulations. J. Eng. Math. doi:10.1007/s10665-008-9263-x (2009)

  45. Coquelle E., Bossis G.: Mullins effect in elastomers filled with particles aligned by a magnetic field. Int. J. Solids Struct. 43, 7659–7672 (2006)

    Article  MATH  Google Scholar 

  46. Criscione J.C.: Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing. J. Elast. 70, 129–147 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Bustamante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, R. Transversely isotropic nonlinear magneto-active elastomers. Acta Mech 210, 183–214 (2010). https://doi.org/10.1007/s00707-009-0193-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0193-0

Keywords

Navigation