Skip to main content
Log in

Failure of cemented granular materials under simple compression: experiments and numerical simulations

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We investigate the strength and failure properties of a model cemented granular material under simple compressive deformation. The particles are lightweight expanded clay aggregate beads coated by a controlled volume fraction of silicone. The beads are mixed with a joint seal paste (the matrix) and molded to obtain dense cemented granular samples of cylindrical shape. Several samples are prepared for different volume fractions of the matrix, controlling the porosity, and silicone coating upon which depends the effective particle–matrix adhesion. Interestingly, the compressive strength is found to be an affine function of the product of the matrix volume fraction and effective particle–matrix adhesion. On the other hand, it is shown that particle damage occurs beyond a critical value of the contact debonding energy. The experiments suggest three regimes of crack propagation corresponding to no particle damage, particle abrasion and particle fragmentation, respectively, depending on the matrix volume fraction and effective particle–matrix adhesion. We also use a sub-particle lattice discretization method to simulate cemented granular materials in two dimensions. The numerical results for crack regimes and the compressive strength are in excellent agreement with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benhamida A., Bouchelaghem F., Dumontet H.: Effective properties of a cemented or an injected granular material. Int. J. Numer. Anal. Methods Geomech. 29, 187–208 (2005)

    Article  MATH  Google Scholar 

  2. Buyukozturk O., Hearing B.: Crack propagation in concrete composites influenced by interface fracture parameters. Int. J. Solids Struct. 35(31–32), 4055–4066 (1998)

    Article  Google Scholar 

  3. Castellanos A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54(114), 263–376 (2005)

    Article  Google Scholar 

  4. Chiaia B.M., Vervuurt A., Van Mier J.G.M.: Lattice model evaluation of progressive failure in disordered particle composites. Eng. Fract. Mech. 57(2–3), 301–309 (1997)

    Article  Google Scholar 

  5. de Larrard F., Belloc A.: The influence of aggregate on the compressive strength of normal and high-strength concrete. ACI Mater. J. 94, 417–426 (1997)

    Google Scholar 

  6. Delaplace A., Pijaudier-Cabot G., Roux S.: Progressive damage in discrete models and consequences on continuum modelling. J. Mech. Phys. Solids 44(1), 99–136 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delenne J.-Y., El Youssoufi M.S., Cherblanc F., Benet J.-C.: Mechanical behaviour and failure of cohesive granular materials. Int. J. Numer. Anal. Methods Geomech. 28(15), 1577–1594 (2004)

    Article  MATH  Google Scholar 

  8. Delenne J.Y., Haddad Y., Benet J.C., Abecassis J.: Use of mechanics of cohesive granular media for analysis of hardness and vitreousness of wheat endosperm. J. Cereal Sci. 47(3), 438–444 (2008)

    Article  Google Scholar 

  9. El Youssoufi M.S., Delenne J.-Y., Radjaï F.: Self-stresses and crack formation by particle swelling in cohesive granular media. Phys. Rev. E 71, 051307 (2005)

    Article  Google Scholar 

  10. Elata D., Dvorkin J.: Pressure sensitivity of cemented granular materials. Mech. Mater. 23(2), 147–154 (1996)

    Article  Google Scholar 

  11. Fitoussi J., Guo G., Baptiste D.: A statistical micromechanical model of anisotropic damage for s.m.c. composites. Compos. Sci. Technol. 58(5), 759–763 (1998)

    Article  Google Scholar 

  12. Goddard J.D.: Microstructural origins of continuum stress fields—a brief history and some unresolved issues. In: DeKee, D., Kaloni, P.N. (eds.) Recent Developments in Structured Continua. Pitman Research Notes in Mathematics No. 143, p 179. Longman, J. Wiley, New York (1986)

  13. He M.-Y., Hutchinson J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25(9), 1053–1067 (1989)

    Article  Google Scholar 

  14. Herrmann, H.J., Roux, S. (eds): Statistical Models for Fracture in Disordered Media. North Holland, Amsterdam (1990)

    Google Scholar 

  15. Johnson K.L.: Contact Mechanics. University Press, Cambridge (1999)

    Google Scholar 

  16. Kendall K., Alford N.McN., Birchall J.D.: The strength of green bodies. Br. Ceram. Proc. 37, 255–265 (1986)

    Google Scholar 

  17. Liu, A.J., Nagel, S.R. (eds): Jamming and Rheology. Taylor & Francis, New York (2001)

    Google Scholar 

  18. Merchant I.J., Macphee D.E., Chandler H.W., Henderson R.J.: Toughening cement-based materials through the control of interfacial bonding. Cement Concrete Res. 31(12), 1873–1880 (2001)

    Article  Google Scholar 

  19. Mishnaevsky L. Jr, Derrien K., Baptiste D.: Effect of microstructure of particle reinforced composites on the damage evolution: probabilistic and numerical analysis. Compos. Sci. Technol. 64(12), 1805–1818 (2004)

    Article  Google Scholar 

  20. Morris C.F.: Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 48, 633–647 (2002)

    Article  Google Scholar 

  21. Nadot-Martin C., Trumel H., Dragon A.: Morphology-based homogenization for viscoelastic particulate composites: Part I: Viscoelasticity sole. Eur. J. Mech. A Solids 22(1), 89–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ouadfel H., Rothenburg L.: Stress–force–fabric relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201–221 (2001)

    Article  Google Scholar 

  23. Radjaï F., Preechawuttipong I., Peyroux R.: Cohesive granular texture. In: Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Luding, S., Ramm, E. (eds) Continuous and Discontinuous Modelling of Cohesive Frictional Materials, pp. 148–159. Springer, Berlin (2000)

    Google Scholar 

  24. Richefeu V., El Youssoufi M.S., Radjai F.: Shear strength properties of wet granular materials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys.) 73(5), 051304 (2006)

    Article  Google Scholar 

  25. Roux, S.: Statistical models for fracture in disordered media. In: Continuum and Discrete Description Of Elasticity and Other Rheological Behavior. pp. 87–114. North Holland, Amsterdam (1990)

  26. Sahimi M.: Heterogeneous Materials II. Springer, New York (2003)

    MATH  Google Scholar 

  27. Schlangen E., van Mier J.G.M.: Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement Concrete Compos. 14(2), 105–118 (1992)

    Article  Google Scholar 

  28. Sienkiewicz F., Shukla A., Sadd M., Zhang Z., Dvorkin J.: A combined experimental and numerical scheme for the determination of contact loads between cemented particles. Mech. Mater. 22(1), 43–50 (1996)

    Article  Google Scholar 

  29. Tan H., Huang Y., Liu C., Geubelle P.H.: The mori-tanaka method for composite materials with nonlinear interface debonding. Int. J. Plast. 21(10), 1890–1918 (2005)

    Article  MATH  Google Scholar 

  30. Tan H., Huang Y., Liu C., Ravichandran G., Inglis H.M., Geubelle P.H.: The uniaxial tension of particulate composite materials with nonlinear interface debonding. Int. J. Solids Struct. 44(6), 1809–1822 (2007)

    Article  MATH  Google Scholar 

  31. Tarbuck E.J., Lutgens F.K.: Earth—An Introduction to Physical Geology. Pearson Education, New Jersey (2005)

    Google Scholar 

  32. Topin V., Delenne J.-Y., Radjai F., Brendel L., Mabille F.: Strength and fracture of cemented granular matter. Eur. Phys. J. E 23, 413–429 (2007)

    Article  Google Scholar 

  33. Topin V., Radjai F., Delenne J.-Y., Mabille F.: Mechanical modeling of wheat hardness and fragmentation. Powder Technol. 190(1–2), 215–220 (2009)

    Article  Google Scholar 

  34. Topin V., Radjai F., Delenne J.-Y., Sadoudi A., Mabille F.: Wheat endosperm as a cohesive granular material. J. Cereal Sci. 47(2), 347–356 (2008)

    Article  Google Scholar 

  35. Troadec H., Radjai F., Roux S., Charmet J.C.: Model for granular texture with steric exclusion. Phys. Rev. E 66(41), 041305-1 (2002)

    Google Scholar 

  36. Turnbull K.M., Rahman S.: Endosperm texture in wheat. J. Cereal Sci. 36(3), 327–337 (2002)

    Article  Google Scholar 

  37. Van Mier J.G.M., Chiaia B.M., Vervuurt A.: Numerical simulation of chaotic and self-organizing damage in brittle disordered materials. Comput. Methods Appl. Mech. Eng. 142(1–2), 189–201 (1997)

    Article  MATH  Google Scholar 

  38. Voivret C., Radjai F., Delenne J.-Y., El Youssoufi M.S.: Space-filling properties of polydisperse granular media. Phys. Rev. E 76(2), 021301–021312 (2007)

    Article  Google Scholar 

  39. Zhonghua L., Schmauder S.: Phase-stress partition and residual stress in metal matrix composites. Comput. Mater. Sci. 18(3–4), 295–302 (2000)

    Article  Google Scholar 

  40. Zhou C.W., Yang W., Fang D.N.: Mesofracture of metal matrix composites reinforced by particles of large volume fraction. Theor. Appl. Fract. Mech. 41(1–3), 311–326 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -Y. Delenne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delenne, J.Y., Topin, V. & Radjai, F. Failure of cemented granular materials under simple compression: experiments and numerical simulations. Acta Mech 205, 9–21 (2009). https://doi.org/10.1007/s00707-009-0160-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0160-9

Keywords

Navigation