Skip to main content
Log in

Global stability for penetrative double-diffusive convection in a porous medium

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Linear and nonlinear stability analyses of penetrative double-diffusive convection in a porous medium are performed. Adopting a standard energy method approach yields a nonlinear threshold which is independent of the salt field. An adaptation of a new operative method by Mulone and Straughan (ZAMM 86: 507–520, 2006) is used to construct a nonlinear threshold which is dependent on the salt field, greatly reducing the region of potential subcritical instabilities. The employment of this operative technique for problems with spatially dependent coefficients, as presented in this paper, is unexplored in the present literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Capone F. and Rionero S. (2003). Nonlinear stability of a convective motion in a porous layer driven by a horizontally periodic temperature gradient. Contin. Mech. Thermodyn. 15: 529–538

    Article  MATH  MathSciNet  Google Scholar 

  2. Guo J. and Kaloni P.N. (1995). Double-diffusive convection in a porous medium, nonlinear stability and the Brinkman effect. Stud. Appl. Math. 94: 341–358

    MATH  MathSciNet  Google Scholar 

  3. Lombardo S. and Mulone G. (2002). Necessary and sufficient conditions for global nonlinear stability for rotating double-diffusive convection in a porous medium. Contin. Mech. Thermodyn. 14: 527–540

    Article  MATH  MathSciNet  Google Scholar 

  4. Joseph D.D. (1970). Global stability of the conduction-diffusion solution. Arch. Rat. Mech. Anal. 36: 285–292

    Article  MATH  Google Scholar 

  5. Lombardo S., Mulone G. and Rionero S. (2001). Global nonlinear exponential stability of the conduction-diffusion solution for Schmidt numbers greater than Prandtl numbers. J. Math. Anal. Appl. 262: 191–207

    Article  MATH  MathSciNet  Google Scholar 

  6. Hutter K. and Straughan B. (1997). Penetrative convection in thawing subsea permafrost. Contin. Mech. Thermodyn. 9: 259–272

    Article  MATH  MathSciNet  Google Scholar 

  7. Payne L.E., Song J.C. and Straughan B. (1998). Double diffusive porous penetrative convection – thawing subsea permafrost. Int. J. Engng. Sci. 26: 797–809

    Article  MathSciNet  Google Scholar 

  8. Qin Y., Guo J. and Kaloni P.N. (1995). Double-diffusive penetrative convection in porous media. Int. J. Engng. Sci. 33: 303–312

    Article  MATH  MathSciNet  Google Scholar 

  9. Shir C.C. and Joseph D.D. (1968). Convective instability in a temperature and concentration field. Arch. Rat. Mech. Anal. 30: 38–80

    Article  MATH  MathSciNet  Google Scholar 

  10. Carr M. (2003). A model for convection in the evolution of under-ice melt ponds. Contin. Mech. Thermodyn. 15: 45–54

    Article  MATH  MathSciNet  Google Scholar 

  11. Mulone G. and Straughan B. (2006). An operative method to obtain necessary and sufficient stability conditions for double diffusive convection in porous media. ZAMM 86: 507–520

    Article  MATH  MathSciNet  Google Scholar 

  12. Trevisan O.V. and Bejan A. (1990). Combined heat and mass transfer by natural convection in a porous medium. Adv. Heat Transf. 28: 1587–1611

    Google Scholar 

  13. Nield D.A. and Bejan A. (1999). Convection in Porous Media. Springer, New York

    MATH  Google Scholar 

  14. Straughan B. (2004). The Energy Method, Stability and Nonlinear Convection. Springer, New York

    MATH  Google Scholar 

  15. Dongarra J.J., Straughan B. and Walker D.W. (1996). Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Num. Math. 22: 399–434

    Article  MATH  MathSciNet  Google Scholar 

  16. Straughan B. and Walker D.W. (1996). Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Comput. Phys. 127: 128–141

    Article  MATH  MathSciNet  Google Scholar 

  17. Christopherson D.G. (1940). Note on the vibration of membranes. Q. J. Math. 11: 63–65

    Article  MathSciNet  Google Scholar 

  18. Rionero S. (2004). On the stability of binary reaction – diffusion systems. Il Nuovo Cim. B 119: 773–784

    MathSciNet  Google Scholar 

  19. Rionero S. (2005). A nonlinear L 2 – stability analysis for two – species population dynamics with dispersal. Math. Biosci. Engng. 3: 189–204

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, A.A. Global stability for penetrative double-diffusive convection in a porous medium. Acta Mech 200, 1–10 (2008). https://doi.org/10.1007/s00707-007-0575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0575-0

Keywords

Navigation