Skip to main content
Log in

Specific effects and features of a combination of amine-containing antibacterial agents and silver nanoparticles stabilized by dicarboxylic acid copolymers

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Various types of combinations of amine-containing antibacterial agents (heterocyclic and macrocyclic antibiotics, protein and peptide antibiotics, D-amino acids) and silver nanoparticles stabilized by dicarboxylic (maleic) acid copolymers (AgNPs) are obtained. The study demonstrated the specific action of the conjugates on the planktonic form of gram-positive and gram-negative microorganisms, and fungi. The antimicrobial properties of the conjugates depend on the structures of the AgNPs stabilizing shell, antibacterial agent, and the cell membrane of the pathogen. The polymer shell of the metal nanoparticles allowed to solubilize hydrophobic antibiotics due to the formation of covalent and non-covalent complexes. A pronounced synergistic antimicrobial effect was observed, when AgNPs were combined with hydrophobic amine-containing antibiotics: rifampin—against Staphylococcus aureus and amphotericin B—against Candida albicans. In these cases, the values of Fractional Inhibitory Concentration Indices were lower than 0.5. A pronounced positive bactericidal effect was observed, when using conjugates of AgNPs and a peptide antibiotic (vancomycin) against Enterococcus faecalis, as well as a protein (lysozyme) and D-amino acids against the variety of microorganisms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhou X, Friedrich AW, Bathoorn E (2017) Front Microbiol 8:2128

    PubMed  PubMed Central  Google Scholar 

  2. Zaman S, Hussain M, Nye R, Mehta V, Mamun KT, Hossain NA (2017) Cureus 9:e1403

    PubMed  PubMed Central  Google Scholar 

  3. Ravishankar RV, Jamuna BA (2011) Science against microbial pathogens: communicating current research and technological advances. In: Méndez-Vilas (ed), FORMATEX, p 197

  4. Oktar FN, Yetmez M, Ficai D, Ficai A, Dumitru F, Pica A (2015) Curr Topics Med Chem 15:1583

    CAS  Google Scholar 

  5. Singh R, Sreedharan SM, Singh SP (2014) J Nanosci Nanotechnol 14:4745

    CAS  PubMed  Google Scholar 

  6. Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Small 8:3016

    CAS  PubMed  Google Scholar 

  7. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Int J Nanomed 5:277

    CAS  Google Scholar 

  8. Fayaz AM, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT (2011) Proc Biochem 46:1958

    Google Scholar 

  9. Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zbořil R, Gardea-Torresdey JL (2014) Environ Sci Technol 48:3228

    CAS  PubMed  Google Scholar 

  10. Christena LR, Mangalagowri V, Pradheeba P, Ahmed KBA, Shalini BIS, Vidyalakshmi M, Anbazhagana V, Sai subramanian N (2015) RSC Adv 5:12899

  11. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R (2013) Biometals 26:609

    CAS  Google Scholar 

  12. Burdusel A-C, Gherasim O, Grumezescu AM, Mogoanta L, Ficai A, Andronescu E (2018) Nanomaterials 8:681

    PubMed Central  Google Scholar 

  13. Durán N, Durán M, Bispo de Jesus M, Seabra AB, Fávaro WJ, Nakazato G (2016) Nanomedicine 12:789

  14. Kora AJ, Rastogi L (2013) Bioinorg Chem Appl 2013:871097

    PubMed  PubMed Central  Google Scholar 

  15. Samoilova N, Kurskaya E, Krayukhina M, Askadsky A, Yamskov I (2009) J Phys Chem B 113:3395

    CAS  PubMed  Google Scholar 

  16. Winek CL, Burgun JJ (1977) Clinic Toxicol 10:255

    CAS  Google Scholar 

  17. Karakus G, Zengin HB, Polat ZA, Yenidunya AF, Aydin S (2013) Polym Bull 70:1591

    CAS  Google Scholar 

  18. Samoilova NA, Krayukhina MA, Novikova SP, Babushkina TA, Volkov IO, Komarova LI, Moukhametova LI, Aisina RB, Obraztsova EA, Yaminsky IV, Yamskov IA (2007) J Biomed Mater Res 82A:589

    CAS  Google Scholar 

  19. Samoilova NA, Krayukhina MA, Vyshivannaya OV, Blagodatskikh IV, Popov DA, Anuchina NM, Yamskov IA (2018) Russ Chem Bull 67:1010

    CAS  Google Scholar 

  20. Samoilova NA, Krayukhina MA, Popov DA, Anuchina NM, Yamskov IA (2015) Biotekhnologiya 1:75

    Google Scholar 

  21. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian SS (2007) Nanomedicine 3:168

  22. Samoilova NA, Krayukhina MA, Popov DA, Anuchina NM, Piskarev VE (2018) Biointerface Res Appl Chem 8:3095

    CAS  Google Scholar 

  23. Cabeen MT, Jacobs-Wanger C (2005) Nat Rev Microbiol 3:601

    CAS  PubMed  Google Scholar 

  24. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Nanotechnol 18:225103

    Google Scholar 

  25. Koneman EW, Allen SD (1997) Color atlas and textbook of diagnostic microbiology, 5th edn. Lippincott, Philadelphia, p 785

    Google Scholar 

  26. Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Antimicrob Agents Chemother 53:3538

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu W, Li LP, Zhang JD (2014) PLoS One 9:e103442

    PubMed  PubMed Central  Google Scholar 

  28. Gupta A, Saleh NM, Das R, Landis RF, Bigdeli A, Motamedchaboki K, Campos AR, Pomeroy K, Mahmoudi M, Rotello VM (2017) Nano Futures 1:015004

    Google Scholar 

  29. Konaté K, Mavoungou JF, Lepengué AN, Aworet-Samseny RRR, Hilou A, Souza A, Dicko MH, M’batchi B (2012) Ann Clin Microbiol Antimicrob 11:18

  30. Sadiki M, Balouipi M, Barkai H, Maataoui H, Ibnsoudkoraichi S, Elabed S (2014) Intern J Pharm Pharm Sci 6:121

    Google Scholar 

  31. Choi S-M, Jang E-J, Cha J-D (2015) Adv Biosci Biotechnol 6:275

    CAS  Google Scholar 

  32. Climo MW, Patron L, Archer GL (1999) Antimicrob Agents Chemother 43:1747

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cha JD, Lee JH, Choi KM, Choi SM, Park JH (2014) Evid Based Complement Alternat Med 2014:450572

    PubMed  PubMed Central  Google Scholar 

  34. Odds FC (2003) J Antimicrob Chemother 52:1

    CAS  PubMed  Google Scholar 

  35. Eliopoulos GM, Moellering RC (1996) Antibiotics. In: Lorian V (ed) Laboratory medicine, 4th edn. Williams and Wilkins, Baltimore, p 330

    Google Scholar 

  36. Bassole IHN, Juliani HR (2012) Molecules 17:3989

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bardaweel SK, Darwish RM, Alzweiri MH, Al-Hiari Y (2014) Jordan J Pharm Sci 7:199

    Google Scholar 

  38. Rasigade JP, Vandenesch F (2014) Infect Genet Evol 21:510

    CAS  PubMed  Google Scholar 

  39. Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X (2016) Int J Nanomed 11:3789

    CAS  Google Scholar 

  40. Halbandge SD, Mortale SP, Karuppayil SM (2017) Open Nanomed J 4:1

    Google Scholar 

  41. Tutaj K, Szlazak R, Szalapata K, Starzyk J, Luchowski R, Grudzinski W, Osinska-Jaroszuk M, Jarosz-Wilkolazka A, Szuster-Ciesielska A, Gruszecki WI (2016) Nanomedicine 12:1095

  42. Manchenko GP (1994) Lysozyme. Handbook of detection of enzymes on electrophoretic gels. CRC Press, Boca Raton, p 223

    Google Scholar 

  43. Dehkordi SSS, Rohani SMR, Tajik H, Moradi M, Aliakbarlou J (2008) J Anim Vet Adv 7:1458

    Google Scholar 

  44. Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) Science 325:1552

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cava F, Lam H, de Pedro MA, Waldor MK (2011) Cell Mol Life Sci 68:817

    CAS  PubMed  Google Scholar 

  46. Aliashkevich A, Alvarez L, Cava F (2018) Front Microbiol 9:683

    PubMed  PubMed Central  Google Scholar 

  47. Ampornaramveth RS, Akeatichod N, Lertnukkhid J, Songsang N (2018) Int J Dent 2018:9413925

    PubMed  PubMed Central  Google Scholar 

  48. Sanchez CJ, Akers KS, Romano DR, Woodbury RL, Hardy SK, Murray CK, Wenke JC (2014) Antimicrob Agents Chemother 58:4353

    PubMed  PubMed Central  Google Scholar 

  49. Conix A, Smets G (1995) J Polym Sci Part A-Polym Chem 15:221

    Google Scholar 

  50. Clinical and Laboratory Standards Institute (2012) Approved Standard, 9th edn. CLSI document M07-A9, vol. 32 M07-A9, Clinical and Laboratory Standards Institute, Wayne, PA, p 1

Download references

Acknowledgements

This work was performed with the financial support from Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Samoilova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilova, N., Krayukhina, M., Popov, D. et al. Specific effects and features of a combination of amine-containing antibacterial agents and silver nanoparticles stabilized by dicarboxylic acid copolymers. Monatsh Chem 150, 2071–2080 (2019). https://doi.org/10.1007/s00706-019-02523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02523-2

Keywords

Navigation