Skip to main content
Log in

Determination of important azoles in soil solution using CE

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The azoles (represented by penconazole, cyproconazole, and tebuconazole in this study) are frequently used agrochemicals to protect various crops against mildew and fungi. They are considered as endocrine disruptors, because they block the biosynthesis (on the level of enzymes inhibition) of biochemicals with steroid structure. Besides targeted impacts, they can partly get into the soil with the rainfall or litter fall and influence/block the biosynthesis of sterols of non-target organisms. In this sense, the risk of disruption of rhizosphere plant–microbial symbiosis and dynamic processes in the soil solution by azoles is of high importance to be evaluated. We have developed an analytical methodology for determination of penconazole, cyproconazole, and tebuconazole in soil solution using capillary electrophoresis with a photodiode array detector at UV-214 nm and acidic electrolyte solution (pH 1.48). The results were also compared with mass spectrometric measurements using μ-TOF mass spectrometry. There approx. 90% of present azoles were bound in the soil solution matrix. The detection limit for these azoles is about 10–7 mol dm−3. Because of very low pKa of azoles, we have to consider deprotonation of azoles and consequently the high affinity to create complexes with cations. The majority of present azoles in soil solution might form neutral adducts with mono-cations, making them invisible in electrospray mass spectra.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zarn JA, Bruschweiler BJ, Schlatter JR (2003) Environ Health Perspect 111:255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trösken ER, Fischer K, Völkel W, Lutz WK (2006) Toxicology 219:33

    Article  CAS  PubMed  Google Scholar 

  3. Jakl M, Fanfrlík J, Jaklová Dytrtová J (2017) Rapid Commun Mass Spectrom 31:2043

    Article  CAS  PubMed  Google Scholar 

  4. Jaklová Dytrtová J, Fanfrlík J, Norková R, Jakl M, Hobza P (2014) Int J Mass Spectrom 359:38

    Article  CAS  Google Scholar 

  5. Jaklová Dytrtová J, Straka M, Bělonožníková K, Jakl M, Ryšlavá H (2018) Food Chem 262:221

    Article  CAS  PubMed  Google Scholar 

  6. Rugova A, Puschenreiter M, Koellensperger G, Hann S (2017) Anal Chim Acta 956:1

    Article  CAS  PubMed  Google Scholar 

  7. Neumann G, George TS, Plassard C (2009) Plant Soil 321:431

    Article  CAS  Google Scholar 

  8. Jaklová Dytrtová J, Šestáková I, Jakl M, Navrátil T (2009) Electroanalysis 21:573

    Article  CAS  Google Scholar 

  9. Grossmann J, Udluft P (1991) J Soil Sci 42:83

    Article  Google Scholar 

  10. McGahan DG, Southard RJ, Zasoski RJ (2014) Geoderma 226:340

    Article  CAS  Google Scholar 

  11. Jaklová Dytrtová J, Jakl M, Schröder D, Navrátil T (2011) Curr Org Chem 15:2970

    Article  Google Scholar 

  12. Jones DL (1998) Plant Soil 205:25

    Article  CAS  Google Scholar 

  13. Norková R, Jaklová Dytrtová J, Jakl M, Schröder D (2012) Water Air Soil Pollut 223:2633

    Article  CAS  Google Scholar 

  14. Kim KR, Owens G, Naidu R, Kwon SI (2010) Geoderma 155:86

    Article  CAS  Google Scholar 

  15. Huang QX, Yu YY, Tang CM, Peng XZ (2010) J Chromatogr A 1217:3481

    Article  CAS  PubMed  Google Scholar 

  16. Ekiert RJ, Krzek J, Talik P (2010) Talanta 82:1090

    Article  CAS  PubMed  Google Scholar 

  17. Chicharro M, Zapardiel A, Bermejo E, Moreno M (2003) Talanta 59:37

    Article  CAS  PubMed  Google Scholar 

  18. Pavlíček V, Tůma P, Matějčková J, Samcová E (2014) Electrophoresis 35:956

    Article  CAS  PubMed  Google Scholar 

  19. Glatz Z (2013) Electrophoresis 34:631

    Article  CAS  PubMed  Google Scholar 

  20. Konášová R, Jaklová Dytrtová J, Kašička V (2015) J Chromatogr A 1408:243

    Article  CAS  PubMed  Google Scholar 

  21. Nowak PM, Wozniakiewicz M, Gladysz M, Janus M, Koscielniak P (2017) Anal Bioanal Chem 409:4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jakl M, Jaklová Dytrtová J, Miholová D, Kolihová D, Száková J, Tlustoš P (2009) Chem Speciat Bioavail 21:111

    Article  CAS  Google Scholar 

  23. Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MNV, Wenzel WW, Rinklebe J (2017) Earth Sci Rev 171:621

    Article  CAS  Google Scholar 

  24. Jaklová Dytrtová J, Jakl M, Schröder D, Čadková E, Komárek M (2011) Rapid Commun Mass Spectrom 25:1037

    Article  CAS  Google Scholar 

  25. Jaklová Dytrtová J, Šestáková I, Jakl M, Száková J, Miholová D, Tlustoš P (2008) Cent Eur J Chem 6:71

    Google Scholar 

  26. Gordien JB, Pigneux A, Vigouroux S, Tabrizi R, Accoceberry I, Bernadou JM, Rouault A, Saux MC, Breilh D (2009) J Pharm Biomed Anal 50:932

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported (J. Jaklová Dytrtová) by the Czech Science Foundation (18-01710S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Jaklová Dytrtová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takala, N., Sirén, H., Jakl, M. et al. Determination of important azoles in soil solution using CE. Monatsh Chem 150, 1625–1631 (2019). https://doi.org/10.1007/s00706-019-02447-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02447-x

Keywords

Navigation