Skip to main content
Log in

Theoretical and voltammetric studies on the electron detachment process of 2,3-dihydroquinazolin-4(1H)-ones

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Electronic and steric effects of the substituent on the 2-position of the heterocyclic ring of various 2-substituted 2,3-dihydroquinazolin-4(1H)-ones (DHQZ) were studied using voltammetric methods at a glassy carbon electrode in chloroform. Analysis of the results indicates that the electronic nature and the steric hindrance of the 2-substitution determine the effects on the oxidation peak potentials. The nature of the solvent also affects the electron detachment process in this study, which explains the extent of solvation of both the neutral DHQZ molecule and the ionic DHQZ·+ intermediate. Analysis of the computational results obtained at the density functional level of theory-B3LYP/6-31++G** level of theory suggests a mechanism in which the first electron removal occurs preferably from the N1 atom of both possible donor positions, N1 and N3 atoms. This process is followed by a fast proton removal from the 2-position of the heterocyclic ring, resulting in the formation of stable benzylic and also donor substituted radicals, which then undergo further oxidation to the quinazolin-4(3H)-ones. Computational studies in the gas phase and also in the bulk of solvent explain the effect of the nature of solvent on the readiness of the electron detachment process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patel NB, Pael JC (2011) Med Chem Res 20:511

    Article  CAS  Google Scholar 

  2. Amnerkar ND, Bhusari KPD (2010) Eur J Med Chem 45:149

    Article  CAS  Google Scholar 

  3. Kamal A, Bharathi EV, Reddy JS, Ramaiah MJ, Dastagiri D, Reddy MK, Viswanath A, Reddy TL, Shaik TB, Pushpavalli SNCVL, Bhadra MP (2011) Eur J Med Chem 46:691

    Article  CAS  Google Scholar 

  4. Wu H, Xie XL, Liu G (2010) J Comb Chem 12:346

    Article  CAS  Google Scholar 

  5. Farghaly AM, Soliman R, Khalil MA, Bekhit AA, el-Din A, Bekhit A (2002) Bull Chem Farm 141:372

    CAS  Google Scholar 

  6. Bakavoli M, Sabzevari O, Rahimizadeh M (2007) Chin Chem Lett 18:1466

    Article  CAS  Google Scholar 

  7. Davoodnia A, Allameh S, Fakhari AR, Tavakoli-Hoseini N (2010) Chin Chem Lett 21:550

    Article  CAS  Google Scholar 

  8. Cabrera-Rivera FA, Ortíz-Nava C, Escalante J, Hernández-Pérez JM, Hô M (2012) Synlett 23:1057

    Article  CAS  Google Scholar 

  9. Memarian HR, Soleymani M, Sabzyan H, Bagherzadeh M, Ahmadi H (2011) J Phys Chem A 115:8264

    Article  CAS  Google Scholar 

  10. Memarian HR, Ranjbar M, Sabzyan H, Kiani A (2012) C R Chim 15:1001

    Article  CAS  Google Scholar 

  11. Memarian HR, Ebrahimi S (2013) J Photochem Photobiol A Chem 271:8

    Article  CAS  Google Scholar 

  12. Abdollahi-Alibeik M, Shabani E (2011) Chin Chem Lett 22:1163

    CAS  Google Scholar 

  13. Hyperchem Release 7.0, Windows Molecular Modeling system, Hypercube, Inc. http://www.hyper.com

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ciolowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh

    Google Scholar 

  15. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  16. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41

    Article  Google Scholar 

  17. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  18. Xiao-Hong L, Zheng-Xin T, Xian-Zhou Z (2009) J Mol Struct (Theochem) 900:50

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Research Council and Office of Graduate Studies of the University of Isfahan for their financial support, and to Prof. R. Karimi and Dr. A. Kiani for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Memarian.

Additional information

In memory of Prof. M. Rahimizadeh, University of Ferdowsi, who passed away on 24 March 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memarian, H.R., Ebrahimi, S. Theoretical and voltammetric studies on the electron detachment process of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh Chem 145, 1545–1554 (2014). https://doi.org/10.1007/s00706-014-1221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1221-x

Keywords

Navigation