Skip to main content
Log in

Correlation between 13C NMR chemical shifts and antiradical activity of flavonoids

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The 13C NMR chemical shifts of a range of flavonoids are predicted by the Mnova NMRPredict software and related to their radical scavenging activity (RSA). 13C NMR chemical shifts of C atoms bearing phenolic OH groups associated with radical attack tend to decrease with increasing antiradical activity. For a data set of 27 flavonoids, fair correlation (r = −0.881) was found between the antiradical activity and minimal value of the 13C NMR chemical shift (NMR min), and it was similar to the correlation (r = −0.850) obtained with the minimal O–H bond dissociation enthalpy (BDE min) calculated by the PM7 method. For a particular flavonoid molecule, 13C NMR chemical shifts of C atoms bearing phenolic OH groups correlate nicely with the corresponding O–H BDEs (e.g., for robinetin r = 0.953). For the complete data set, there is a similar correlation between NMR min and BDE min values (r = 0.944). As a rule, NMR min is related to nuclei bearing a 3′,4′-dihydroxy moiety in the B ring or 3-OH phenolic group in the C ring, i.e., to the preferred sites of radical attack. Thus, the 13C NMR chemical shifts of C atoms bearing phenolic OH groups are in accordance with the O–H BDEs, i.e., describe the H atom donor ability of phenolic OH groups. The statistical significance of the relationship between the minimal 13C NMR chemical shift and RSA was verified by comparison with correlations between RSA and each of 1,140 Dragon molecular descriptors, where the highest correlation coefficient of 0.812 was obtained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halliwell B (2009) Free Radic Biol Med 46:531

    Article  CAS  Google Scholar 

  2. Havsteen BH (2002) Pharmacol Ther 96:67

    Article  CAS  Google Scholar 

  3. Williams RJ, Spencer JPE, Rice-Evans C (2004) Free Radic Biol Med 36:838

    Article  CAS  Google Scholar 

  4. Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MSRB, Folador P, Damazio RG, Pizzolatti MG, Silva FRMB (2008) Mini Rev Med Chem 8:1429

    Article  CAS  Google Scholar 

  5. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. In: Packer L, Glazer AN (eds) Methods in enzymology, vol 186. Academic Press, San Diego, p 343

    Google Scholar 

  6. Amić D, Davidović-Amić D, Bešlo D, Rastija V, Lučić B, Trinajstić N (2007) Curr Med Chem 14:827

    Article  Google Scholar 

  7. Zhang H-Y, Ji H-F (2006) New J Chem 30:503

    Article  CAS  Google Scholar 

  8. Litwinienko G, Ingold KU (2007) Acc Chem Res 40:222

    Article  CAS  Google Scholar 

  9. Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güclü K (2013) Pure Appl Chem 85:957

    Article  CAS  Google Scholar 

  10. Amić D, Lučić B (2010) Bioorg Med Chem 18:28

    Article  Google Scholar 

  11. Prabhakar YS, Gupta MK (2008) Sci Pharm 76:101

    Article  CAS  Google Scholar 

  12. Fossen T, Andersen ØM (2006) Spectroscopic techniques applied to flavonoids. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton, p 37

    Google Scholar 

  13. March R, Brodbelt J (2008) J Mass Spectrom 43:1581

    Article  CAS  Google Scholar 

  14. Agrawal PK (1989) Carbon-13 NMR of Flavonoids. Elsevier, Amsterdam

    Google Scholar 

  15. Ternai B, Markham KR (1976) Tetrahedron 32:565

    Article  CAS  Google Scholar 

  16. Markham KR, Ternai B (1976) Tetrahedron 32:2607

    Article  CAS  Google Scholar 

  17. Markham KR, Ternai B, Stanley R, Geiger H, Mabry TJ (1978) Tetrahedron 34:1389

    Article  CAS  Google Scholar 

  18. Agrawal PK, Schneider H-J (1983) Tetrahedron Lett 24:177

    Article  CAS  Google Scholar 

  19. Markham KR, Sheppard C, Geiger H (1987) Phytochemistry 26:3335

    Article  CAS  Google Scholar 

  20. Wawer I, Zielinska A (1997) Solid State NMR 10:33

    Article  CAS  Google Scholar 

  21. Wawer I, Zielinska A (2001) Magn Reson Chem 39:374

    Article  CAS  Google Scholar 

  22. Park Y, Moon B-H, Lee E, Lee Y, Yoon Y, Ahn J-H, Lim Y (2007) Magn Reson Chem 45:674

    Article  CAS  Google Scholar 

  23. Burns DC, Ellis DA, March RE (2007) Magn Reson Chem 45:835

    Article  CAS  Google Scholar 

  24. Zhou X, Peng J, Fan G, Wu Y (2005) J Chromatogr A 1092:216

    Article  CAS  Google Scholar 

  25. Lee S, Park Y, Moon B-H, Lee E, Hong S, Lim Y (2008) Bull Korean Chem Soc 29:1597

    Article  CAS  Google Scholar 

  26. Price KR, Rhodes MJC (1997) J Sci Food Agric 74:331

    Article  CAS  Google Scholar 

  27. Aksnes DW, Standnes A, Andersen ØM (1996) Magn Reson Chem 34:820

    Article  CAS  Google Scholar 

  28. Moon B-H, Lee Y, Ahn J-H, Lim Y (2006) Magn Reson Chem 44:99

    Article  CAS  Google Scholar 

  29. Verma RP, Hansch C (2011) Chem Rev 111:2865

    Article  CAS  Google Scholar 

  30. Burda S, Oleszek W (2001) J Agric Food Chem 49:2774

    Article  CAS  Google Scholar 

  31. Mestrelab Research, MNova Version: 5.2.5-4731, http://mestrelab.com

  32. Zielinski R, Szymusiak H (2003) Pol J Food Nutr Sci 12/53:157

    Google Scholar 

  33. Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G (2009) J Org Chem 74:2699

    Article  CAS  Google Scholar 

  34. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  35. Košinova P, Di Meo F, Anouar EH, Duroux J-L, Trouillas P (2011) Int J Quantum Chem 111:1131

    Article  Google Scholar 

  36. Stepanić V, Gall Trošelj K, Lučić B, Marković Z, Amić D (2013) Food Chem 141:1562

    Article  Google Scholar 

  37. Amić D, Stepanić V, Lučić B, Marković Z, Dimitrić Marković JM (2013) J Mol Model 19:2593

    Article  Google Scholar 

  38. Cobos CJ, Capparelli AL (1995) J Fluor Chem 70:155

    Article  CAS  Google Scholar 

  39. Amić D, Davidović-Amić D, Bešlo D, Trinajstić N (2003) Croat Chem Acta 76:55

    Google Scholar 

  40. Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2012) J Mol Model 18:4491

    Article  Google Scholar 

  41. Talete srl, DRAGON 5.4, www.talete.mi.it

  42. Claridge T (2009) J Chem Inf Model 49:1136

    Article  CAS  Google Scholar 

  43. Stewart JJP (2013) J Mol Model 19:1

    Article  CAS  Google Scholar 

  44. MOPAC2012. http://openmopac.net/MOPAC2012.html

  45. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 098-1770495-2919, 098-0982929-2917, 098-0982464-2511 and 079-0000000-3211 awarded by the Ministry of Science, Education and Sports of the Republic of Croatia. The authors thank Mestrelab Research S.L. for the free demonstration version of the MestReNova LITE program. We also gratefully acknowledge the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bono Lučić or Dragan Amić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 551 kb)

Supplementary material 2 (XLS 445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lučić, B., Stepanić, V., Plavšić, D. et al. Correlation between 13C NMR chemical shifts and antiradical activity of flavonoids. Monatsh Chem 145, 457–463 (2014). https://doi.org/10.1007/s00706-013-1130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1130-4

Keywords

Navigation