Skip to main content
Log in

Genome analysis and classification of Xanthomonas bacteriophage AhaSv, a new member of the genus Salvovirus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Xanthomonas phage AhaSv was isolated from lake water. Genome sequencing showed that its genome is a linear dsDNA molecule with a length of 55,576 bp and a G+C content of 63.23%. Seventy-one open reading frames (ORFs) were predicted, and no tRNAs were found in the genome. Phylogenetic analysis showed that AhaSv is closely related to members of the genus Salvovirus of the family Casjensviridae. Intergenomic similarity values between phage AhaSv and homologous phages were up to 90.6%, suggesting that phage AhaSv should be considered a member of a new species in the genus Salvovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data presented in this article are available from the corresponding author on reasonable request.

References

  1. Kritzinger Q, Mandiriza-Mukwirimba G, Aveling T (2016) A survey of brassica vegetable smallholder farmers in the Gauteng and Limpopo provinces of South Africa. J Agric Rural Dev Trop Subtrop 117:35–44

    Google Scholar 

  2. Liu Z, Wang H, Wang J, Lv J, Xie B, Luo S, Wang S, Zhang B, Li Z, Yue Z, Yu J (2022) Physical, chemical, and biological control of black rot of brassicaceae vegetables: A review. Front Microbiol 13:1023826

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nakayinga R, Makumi A, Tumuhaise V, Tinzaara W (2021) Xanthomonas bacteriophages: a review of their biology and biocontrol applications in agriculture. BMC Microbiology 21:291

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jaryenneh J, Schoeniger JS, Mageeney CM (2023) Genome sequence and characterization of a novel Pseudomonas putida phage, MiCath. Sci Rep 13:21834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schubert M, Lindgreen S, Orlando L (2016) AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 9:88

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  7. Coil D, Jospin G, Darling AE (2014) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589

    Article  PubMed  Google Scholar 

  8. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75–75

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chan PP, Lowe TM (2019) tRNAscan-SE: searching for tRNA genes in genomic sequences. In: Kollmar M (ed) Gene prediction: methods and protocols. Springer, New York, pp 1–14

    Google Scholar 

  11. Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Cy C, Graham M, Van Domselaar G, Stothard P (2023) Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51:W484–W492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7:8292

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S (2017) ViPTree: the viral proteomic tree server. Bioinformatics 33:2379–2380

    Article  CAS  PubMed  Google Scholar 

  15. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC—a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12:1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turner D, Kropinski AM, Adriaenssens EM (2021) A roadmap for genome-based phage taxonomy. Viruses 13:506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province (U1812401) and the Provincial Program on Platform and Talent Development of the Department of Science and Technology of Guizhou, China ([2019] 5617, [2019] 5655).

Author information

Authors and Affiliations

Authors

Contributions

Qingbei Weng contributed to the study conception and design. Data collection, analysis, and manuscript writing were performed by Ni An and Qingshan Wu. Methodology and resources were provided by Zheng Fang and Lan Xiang. Qiuping Liu, Leitao Tan, and Qingbei Weng commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qingbei Weng.

Ethics declarations

Ethical approval

This study does not involve human or animal subjects.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Johannes Wittmann

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ni An and Qingshan Wu contributed equally to this work and should be regarded as co-first authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, N., Wu, Q., Fang, Z. et al. Genome analysis and classification of Xanthomonas bacteriophage AhaSv, a new member of the genus Salvovirus. Arch Virol 169, 117 (2024). https://doi.org/10.1007/s00705-024-06047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-06047-x

Navigation