Skip to main content

Advertisement

Log in

Genomic characterization of the novel bacteriophage IME183, infecting Klebsiella pneumoniae of capsular type K2

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Klebsiella pneumoniae causes a wide range of serious and life-threatening infections. Klebsiella phage IME183, isolated from hospital sewage, exhibited lytic activity against K. pneumoniae of capsular type K2. Transmission electron microscopy revealed that phage IME183 has a head with a diameter of 50 nm and a short tail. Its genome is 41,384 bp in length with a GC content of 52.92%. It is predicted to contain 50 open reading frames (ORFs). The results of evolutionary analysis suggest that phage IME183 should be considered a member of a new species in the genus Przondovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability statement

The genomic sequence obtained in the current study is available in the GenBank database under accession number MZ398245.

References

  1. Martin RM, Bachman MA (2018) Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Mi 8:4. https://doi.org/10.3389/fcimb.2018.00004

    Article  CAS  Google Scholar 

  2. Podschun R., Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603. https://doi.org/10.1128/CMR.11.4.589

  3. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D et al (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 112(27):E3574–E3581. https://doi.org/10.1073/pnas.1501049112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meatherall BL, Gregson D, Ross T, Pitout JDD, Laupland KB (2009) Incidence, risk factors, and outcomes of Klebsiella pneumoniae Bacteremia. Am J Med 122(9):866–873. https://doi.org/10.1016/j.amjmed.2009.03.034

    Article  Google Scholar 

  5. Tsay RW, Siu LK, Fung CP, Chang FY (2002) Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection—risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med 162(9):1021–1027. https://doi.org/10.1001/archinte.162.9.1021

    Article  PubMed  Google Scholar 

  6. Kortright KE, Chan BK, Koff JL, Turner PE (2019) Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25(2):219–232. https://doi.org/10.1016/j.chom.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  7. Herridge WP, Shibu P, O’Shea J, Brook TC, Hoyles L (2020) Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J Med Microbiol 69(2):176–194. https://doi.org/10.1099/jmm.0.001141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lebeaux D, Merabishvili M, Caudron E, Lannoy D, Van Simaey L, Duyvejonck H et al (2021) A case of phage therapy against pandrug-resistant Achromobacter xylosoxidans in a 12-year-old lung-transplanted cystic fibrosis patient. Viruses. https://doi.org/10.3390/v13010060

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fadlallah A, Chelala E, Legeais JM (2015) Corneal infection therapy with topical bacteriophage administration. Open Ophthalmol J. 9:167–168. https://doi.org/10.2174/1874364101509010167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cano EJ, Caflisch KM, Bollyky PL, Van Belleghem JD, Patel R, Fackler J et al (2021) Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin Infect Dis 73(1):e144–e151. https://doi.org/10.1093/cid/ciaa705

    Article  PubMed  Google Scholar 

  11. Nir-Paz R, Gelman D, Khouri A, Sisson BM, Fackler J, Alkalay-Oren S et al (2019) Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clin Infect Dis 69(11):2015–2018. https://doi.org/10.1093/cid/ciz222

    Article  PubMed  Google Scholar 

  12. Bao J, Wu N, Zeng Y, Chen L, Li L, Yang L et al (2020) Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg Microbes Infect 9(1):771–774. https://doi.org/10.1080/22221751.2020.1747950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69

    Article  CAS  PubMed  Google Scholar 

  14. Zhang B, Sun H, Zhao F, Wang Q, Pan Q, Tong Y et al (2022) Characterization and genomic analysis of a novel jumbo bacteriophage vB_StaM_SA1 infecting staphylococcus aureus with two lysins. Front Microbiol 13:856473. https://doi.org/10.3389/fmicb.2022.856473

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khan MM, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10(5):e0118557

    Article  Google Scholar 

  16. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C et al (2013) wzi Gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 51(12):4073–4078. https://doi.org/10.1128/JCM.01924-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weeks CR, Ferretti JJ (1984) The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect Immun 46(2):531–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep-Uk 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  Google Scholar 

  22. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42(D1):D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 4:e1900v1. https://doi.org/10.7287/peerj.preprints.1900v1

  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micr 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  Google Scholar 

  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN (2021) Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemoth 76(1):101–109. https://doi.org/10.1093/jac/dkaa390

    Article  CAS  Google Scholar 

  28. Solovieva EV, Myakinina VP, Kislichkina AA, Krasilnikova VM, Volozhantsev NV (2018) Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types. Virus Res 243:10

    Article  CAS  PubMed  Google Scholar 

  29. Venkataraman S, Prasad BVLS, Selvarajan R (2018) RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses-Basel 10(2):76. https://doi.org/10.3390/v10020076

    Article  CAS  Google Scholar 

  30. Feiss M, Rao VB (2012) The bacteriophage DNA packaging machine. Adv Exp Med Biol 726:489–509. https://doi.org/10.1007/978-1-4614-0980-9_22

    Article  CAS  PubMed  Google Scholar 

  31. Teng TS, Li QM, Liu ZG, Li XH, Liu ZZ, Liu HS et al (2019) Characterization and genome analysis of novel Klebsiella phage Henu1 with lytic activity against clinical strains of Klebsiella pneumoniae. Arch Virol 164(9):2389–2393. https://doi.org/10.1007/s00705-019-04321-x

    Article  CAS  PubMed  Google Scholar 

  32. Pertics BZ, Cox A, Nyul A, Szamek N, Kovacs T, Schneider G (2021) Isolation and characterization of a novel lytic bacteriophage against the K2 capsule-expressing hypervirulent Klebsiella pneumoniae strain 52145, and identification of its functional depolymerase. Microorganisms. https://doi.org/10.3390/microorganisms9030650

    Article  PubMed  PubMed Central  Google Scholar 

  33. Volozhantsev NV, Shpirt AM, Borzilov AI, Komisarova EV, Knirel YA (2020) Characterization and therapeutic potential of bacteriophage-encoded polysaccharide depolymerases with β galactosidase activity against Klebsiella pneumoniae K57 capsular type. Antibiotics 9(11):732

    Article  CAS  Google Scholar 

  34. Latka A, Leiman PG, Drulis-Kawa Z, Briers Y (2019) Modeling the architecture of depolymerase-containing receptor binding proteins in Klebsiella phages. Front Microbiol 10:2649. https://doi.org/10.3389/fmicb.2019.02649

    Article  PubMed  PubMed Central  Google Scholar 

  35. Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49(D1):D344–D354. https://doi.org/10.1093/nar/gkaa977

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (no. 2018YFA0903000), the Military Biosecurity Research Program (no. 20SWAQX27), the Key Project of Beijing University of Chemical Technology (no. XK1803-06), Funds for First-class Discipline Construction (no. XK1805), and Fundamental Research Funds for Central Universities (nos. BUCTRC201917 and BUCTZY2022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Experimental work, data collection, and analysis were performed by JX and FT. This study was conceived and designed by QF, FL, and YT. The first draft of the manuscript was written by JX, and all authors commented on previous versions of manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiang Feng, Fei Li or Yigang Tong.

Ethics declarations

Conflict of interest

All of the authors declare that they have no competing interests.

Ethical approval

This research does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Supplementary file2 (DOCX 386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Tian, F., Feng, Q. et al. Genomic characterization of the novel bacteriophage IME183, infecting Klebsiella pneumoniae of capsular type K2. Arch Virol 168, 261 (2023). https://doi.org/10.1007/s00705-023-05873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05873-9

Navigation