Skip to main content
Log in

Molecular characterization of Cordyline virus 1 isolates infecting yam (Dioscorea spp)

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Cordyline virus 1 (CoV1) is a velarivirus that has so far only been reported in ornamental Ti plants (Cordyline fruticosa). Using high-throughput sequencing, we identified CoV1 infection in yam accessions from Vanuatu. Using a specific RT-PCR assay, we found that CoV1 is also present and highly prevalent in Dioscorea alata, D. cayenensis, and D. trifida in Guadeloupe. Phylogenetic analysis showed that CoV1 isolates infecting yam in Guadeloupe display a low level of molecular diversity. These data provide insights into the transmission of CoV1 in yam in Guadeloupe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Availability of data and material

The nucleotide sequences reported in this work have been deposited in the GenBank database under accession numbers MZ648045 to MZ648087 and OM471839.

References

  1. Padhan B, Panda D (2020) Potential of neglected and underutilized yams (Dioscorea spp.) for improving nutritional security and health benefits. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00496

    Article  PubMed  PubMed Central  Google Scholar 

  2. Price EJ, Bhattacharjee R, Lopez-Montes A, Fraser PD (2017) Metabolite profiling of yam (Dioscorea spp.) accessions for use in crop improvement programmes. Metabolomics 13:144. https://doi.org/10.1007/s11306-017-1279-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Romm A, Hardy ML, Mills S (2010) WILD YAM. In: Romm A, Hardy ML, Mills S (eds) Botanical Medicine for Women’s Health. Churchill Livingstone, Saint Louis, pp 550–611

    Chapter  Google Scholar 

  4. Filloux D, Fernandez E, Loire E et al (2018) Nanopore-based detection and characterization of yam viruses. Sci Rep. https://doi.org/10.1038/s41598-018-36042-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dey KK, Sugikawa J, Kerr C, Melzer MJ (2019) Air potato (Dioscorea bulbifera) plants displaying virus-like symptoms are co-infected with a novel potyvirus and a novel ampelovirus. Virus Genes 55:117–121. https://doi.org/10.1007/s11262-018-1616-6

    Article  CAS  PubMed  Google Scholar 

  6. Bömer M, Rathnayake AI, Visendi P et al (2019) Tissue culture and next-generation sequencing: a combined approach for detecting yam (Dioscorea spp.) viruses. Physiol Mol Plant Pathol 105:54–66. https://doi.org/10.1016/j.pmpp.2018.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Umber M, Filloux D, Gélabale S et al (2020) Molecular viral diagnosis and sanitation of yam genetic resources: implications for safe yam germplasm exchange. Viruses 12:1101. https://doi.org/10.3390/v12101101

    Article  CAS  PubMed Central  Google Scholar 

  8. Marais A, Umber M, Filloux D et al (2020) Yam asymptomatic virus 1, a novel virus infecting yams (Dioscorea spp.) with significant prevalence in a germplasm collection. Arch Virol 165:2653–2657. https://doi.org/10.1007/s00705-020-04787-0

    Article  CAS  PubMed  Google Scholar 

  9. Marais A, Faure C, Bergey B, Candresse T (2018) Viral Double-Stranded RNAs (dsRNAs) from Plants: Alternative Nucleic Acid Substrates for High-Throughput Sequencing. In: Pantaleo V, Chiumenti M (eds) Viral Metagenomics: Methods and Protocols. Springer, New York, pp 45–53

    Chapter  Google Scholar 

  10. Lefebvre M, Theil S, Ma Y, Candresse T (2019) The VirAnnot pipeline: a resource for automated viral diversity estimation and operational taxonomy units assignation for virome sequencing data. Phytobiomes J 3:256–259. https://doi.org/10.1094/PBIOMES-07-19-0037-A

    Article  Google Scholar 

  11. Melzer MJ, Sether DM, Borth WB et al (2011) An assemblage of closteroviruses infects Hawaiian ti (Cordyline fruticosa L.). Virus Genes 42:254–260. https://doi.org/10.1007/s11262-010-0537-9

    Article  CAS  PubMed  Google Scholar 

  12. Melzer M, Ayin C, Sugano J et al (2013) Differentiation and distribution of cordyline viruses 1–4 in Hawaiian ti plants (Cordyline fruticosa L.). Viruses 5:1655–1663. https://doi.org/10.3390/v5071655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olmedo-Velarde A, Park AC, Sugano J et al (2019) Characterization of Ti ringspot-associated virus, a novel Emaravirus associated with an emerging ringspot disease of Cordyline fruticosa. Plant Dis 103:2345–2352. https://doi.org/10.1094/PDIS-09-18-1513-RE

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs M, Bar-Joseph M, Candresse T, et al ICTV Virus Taxonomy Profile: Closteroviridae. J Gen Virol 101:364–365. https://doi.org/10.1099/jgv.0.001397

  15. Foissac X, Svanella-Dumas L, Gentit P, et al (2005) Polyvalent degenerate oligonucleotides reverse transcription-polymerase chain reaction: a polyvalent detection and characterization tool for trichoviruses, capilloviruses, and foveaviruses. Phytopathology® 95:617–625. https://doi.org/10.1094/PHYTO-95-0617

  16. De Clerck C, Crew K, Van den Houwe I et al (2017) Lessons learned from the virus indexing of Musa germplasm: insights from a multiyear collaboration: Virus indexing of Musa germplasm. Ann Appl Biol 171:15–27. https://doi.org/10.1111/aab.12353

    Article  Google Scholar 

  17. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. https://doi.org/10.1007/bf02101694

    Article  PubMed  Google Scholar 

  18. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rubio L, Abou-Jawdah Y, Lin H-X, Falk BWY (2001) Geographically distant isolates of the crinivirus Cucurbit yellow stunting disorder virus show very low genetic diversity in the coat protein gene. J Gen Virol 82:929–933. https://doi.org/10.1099/0022-1317-82-4-929

    Article  CAS  PubMed  Google Scholar 

  20. Bertazzon N, Borgo M, Vanin S, Angelini E (2010) Genetic variability and pathological properties of Grapevine Leafroll-associated Virus 2 isolates. Eur J Plant Pathol 127:185–197. https://doi.org/10.1007/s10658-010-9583-3

    Article  Google Scholar 

  21. Esteves F, Teixeira Santos M, Eiras-Dias JE, Fonseca F (2012) Occurrence of grapevine leafroll-associated virus 5 in Portugal: genetic variability and population structure in field-grown grapevines. Arch Virol 157:1747–1765. https://doi.org/10.1007/s00705-012-1371-2

    Article  CAS  PubMed  Google Scholar 

  22. Katsiani A, Maliogka VI, Katis N et al (2018) High-throughput sequencing reveals further diversity of little cherry virus 1 with implications for diagnostics. Viruses 10:385. https://doi.org/10.3390/v10070385

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Eric Francius, Lévy Laurent, and Lucien Montpierre for assistance with sampling, and Léa Zozo, Alisson Abadie, and Nolan Pellecuier for technical help.

Funding

This work was funded by the Agence Nationale de la Recherche (ANR) and the Guadeloupe Region through the NetBiome program under project SafePGR (ANR-11-EBIM-0002-06) and by the European Commission and the Guadeloupe Region through the Malin project (2018-FED-1088) under the EU’s Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Umber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Jesús Navas-Castillo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2022_5535_MOESM1_ESM.pptx

Supplementary file1 (PPTX 44 KB) Supplementary Fig. S1 Schematic representation of the genome of CoV1-VU567Da (A) and CoV1-Kahaluu (B). Boxes represent the putative open reading frames (ORFs). RdRp, RNA-dependent RNA polymerase; HSP70h, heat shock protein 70 homolog; CP, coat protein; CPm, minor coat protein. A size scale is provided in the upper part of the figure.

705_2022_5535_MOESM2_ESM.xlsx

Supplementary file2 (XLSX 14 KB) Supplementary Table S1 Position and size of the ORFs and conceptually translated proteins of CoV1-VU567Da and CoV1-Kahaluu

705_2022_5535_MOESM3_ESM.xlsx

Supplementary file3 (XLSX 13 KB) Supplementary Table S2 Prevalence of CoV1 in yam accessions maintained under field conditions and collected in 2019

705_2022_5535_MOESM4_ESM.xlsx

Supplementary file4 (XLSX 14 KB) Supplementary Table S3 Prevalence of CoV1 in yam accessions maintained under field conditions and collected in 2020

705_2022_5535_MOESM5_ESM.xlsx

Supplementary file5 (XLSX 31 KB) Supplementary Table S4 Prevalence of CoV1 in yam accessions from the BRC-TP in vitro collection collected between 2014 and 2019. CoV1-VU567Da: complete sequence VU567Da CoV1 isolate. YamCoV1 diversity: RdRp sequences of CoV1 yam isolates used for diversity analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diouf, M.B., Gaspard, O., Marais, A. et al. Molecular characterization of Cordyline virus 1 isolates infecting yam (Dioscorea spp). Arch Virol 167, 2275–2280 (2022). https://doi.org/10.1007/s00705-022-05535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05535-2

Navigation