Skip to main content

Advertisement

Log in

Multiple isoforms of HSP70 and HSP90 required for betanodavirus multiplication in medaka cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Heat shock proteins (HSPs) are molecular chaperones that have recently been shown to function as host factors (HFs) for virus multiplication in fish as well as in mammals, plants, and insects. HSPs are classified into families, and each family has multiple isoforms. However, no comprehensive studies have been performed to clarify the biological importance of these multiple isoforms for fish virus multiplication. Betanodaviruses are the causative agents of viral nervous necrosis in cultured marine fish and cause very high mortality. Although the viral genome and encoded proteins have been characterized extensively, information on HFs for these viruses is limited. In this study, therefore, we focused on the HSP70 and HSP90 families to examine the importance of their isoforms for betanodavirus multiplication. We found that HSP inhibitors (17-AAG, radicicol, and quercetin) suppressed viral RNA replication and production of progeny virus in infected medaka (Oryzias latipes) cells. Thermal stress or virus infection resulted in increased expression of some isoform genes and facilitated virus multiplication. Furthermore, overexpression and knockdown of some isoform genes revealed that the isoforms HSP70-1, HSP70-2, HSP70-5, HSP90-α1, HSP90-α2, and HSP90-β play positive roles in virus multiplication in medaka. Collectively, these results suggest that multiple isoforms of fish HPSs serve as HFs for betanodavirus multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jahanafrooz Z, Chen Z, Bao J, Li H, Lipworth L, Guo X (2022) An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene 808:145963

    Article  CAS  PubMed  Google Scholar 

  2. Shukla E, Chauhan R (2019) Host-HIV-1 Interactome: A quest for novel therapeutic intervention. Cells 8:1155

    Article  CAS  PubMed Central  Google Scholar 

  3. Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE (2016) Multi-omics studies towards novel modulators of influenza A virus-host interaction. Viruses 8:269

    Article  PubMed Central  CAS  Google Scholar 

  4. Huang R, Zhu G, Zhang J, Lai Y, Xu Y, He J, Xie J (2017) Betanodavirus-like particles enter host cells via clathrin-mediated endocytosis in a cholesterol-, pH- and cytoskeleton-dependent manner. Vet Res 48:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu X, Qin Z, Babu VS, Zhao L, Li J, Zhang X, Lin L (2019) Transcriptomic profiles of striped snakehead cells (SSN-1) infected with snakehead vesiculovirus (SHVV) identifying IFI35 as a positive factor for SHVV replication. Fish Shellfish Immunol 86:46–52

    Article  CAS  PubMed  Google Scholar 

  6. Lu LF, Zhang C, Li ZC, Zhou XY, Jiang JY, Chen DD, Zhang YA, Xiong F, Zhou F, Li S (2021) A novel role of Zebrafish TMEM33 in negative regulation of interferon production by two distinct mechanisms. PloS Pathog 17:e1009317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rao Y, Ji J, Liao Z, Su H, Su J (2019) GCRV hijacks TBK1 to evade IRF7-mediated antiviral immune responses in grass carp Ctenopharyngodon idella. Fish Shellfish Immunol 93:492–499

    Article  CAS  PubMed  Google Scholar 

  8. Sun M, Wu S, Zhang X, Zhang L, Kang S, Qin Q, Wei J (2021) Grouper TRAF5 exerts negative regulation on antiviral immune response against iridovirus. Fish Shellfish Immunol 115:7–13

    Article  CAS  PubMed  Google Scholar 

  9. Xu TJ, Chu Q, Cui JX (2018) Rhabdovirus-inducible microRNA-210 modulates antiviral innate immune response via targeting STING/MITA in fish. J Immunol 201:982–994

    Article  CAS  PubMed  Google Scholar 

  10. Yu Y, Li C, Wang Y, Wang Q, Wang S, Wei S, Yang M, Qin Q (2019) Molecular cloning and characterization of grouper Krϋppel-like factor 9 gene: involvement in the fish immune response to viral infection. Fish Shellfish Immunol 89:677–686

    Article  CAS  PubMed  Google Scholar 

  11. Chen B, Huo S, Liu W, Wang F, Lu Y, Xu Z, Liu X (2019) Fish-specific finTRIM FTR36 triggers IFN pathway and mediates inhibition of viral replication. Fish Shellfish Immunol 84:876–884

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Yu Y, Yang Y, Yang M, Zhou L, Huang X, Qin Q (2016) Antiviral function of grouper MDA5 against iridovirus and nodavirus. Fish Shellfish Immunol 54:188–196

    Article  CAS  PubMed  Google Scholar 

  13. Kim MS, Shin MJ, Kim KH (2018) Increase of viral hemorrhagic septicemia virus growth by knockout of IRF9 gene in Epithelioma papulosum cyprini cells. Fish Shellfish Immunol 83:443–448

    Article  CAS  PubMed  Google Scholar 

  14. Wei M, Zhang Y, Aweya JJ, Wang F, Li S, Lun J, Zhu C, Yao D (2019) Litopenaeus vannamei Src64B restricts white spot syndrome virus replication by modulating apoptosis. Fish Shellfish Immunol 93:313–321

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Huang L, Gao X, Qin Q, Huang X, Huang Y (2022) Grouper USP12 exerts antiviral activity against nodavirus infection. Fish Shellfish Immunol 121:332–341

    Article  CAS  PubMed  Google Scholar 

  16. Chen HJ, Li PH, Yang Y, Xin XH, Ou Y, Wei JG, Huang YH, Huang XH, Qin QW, Sun HY (2021) Characterization and function analysis of Epinephelus coioides Hsp40 response to Vibrio alginolyticus and SGIV infection. Fish Shellfish Immunol 118:396–404

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Yu F, Wang H, Hong X, Lu L (2020) Induction of pro-viral grass carp Ctenopharyngodon idella Hsp70 instead of Hsc70 during infection of grass carp reovirus. Fish Shellfish Immunol 98:1024–1029

    Article  CAS  PubMed  Google Scholar 

  18. Li PH, Cai YJ, Zhu XL, Yang JDH, Yang SQ, Huang W, Wei SN, Zhou S, Wei JG, Qin QW, Sun HY (2022) Epinephelus coioides Hsp27 negatively regulates innate immune response and apoptosis induced by Singapore grouper iridovirus (SGIV) infection. Fish Shellfish Immunol 120:470–480

    Article  CAS  PubMed  Google Scholar 

  19. Yu F, Wang L, Li W, Wang H, Que S, Lu L (2020) Aquareovirus NS31 protein serves as a specific inducer for host heat shock 70-kDa protein. J Gen Virol 101:144–155

    Article  CAS  Google Scholar 

  20. Zhang Y, Zhang YA, Tu J (2021) Hsp90 is required for snakehead vesiculovirus replication via stabilization of the viral L protein. J Virol 95:e0059421

    Article  PubMed  Google Scholar 

  21. Le Y, Jia P, Jin Y, Liu W, Jia K, Yi M (2017) The antiviral role of heat shock protein 27 against red spotted grouper nervous necrosis virus infection in sea perch. Fish Shellfish Immunol 70:185–194

    Article  CAS  PubMed  Google Scholar 

  22. Li C, Shi L, Gao Y, Lu Y, Ye J, Liu X (2021) HSC70 inhibits spring viremia of carp virus replication by inducing MARCH8-mediated lysosomal degradation of G protein. Front Immunol 12:724403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lubkowska A, Pluta W, Strońska A, Lalko A (2021) Role of heat shock proteins (HSP70 and HSP90) in viral infection. Int J Mol Sci 22:9366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagy PD, Wang RY, Pogany J, Hafren A, Makinen K (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411:374–382

    Article  CAS  PubMed  Google Scholar 

  25. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  26. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  27. Pham PH, Sokeechand BSH, Hamilton ME, Misk E, Jones G, Lee LEJ, Lumsden JS, Bols NC (2019) VER-155008 induced Hsp70 proteins expression in fish cell cultures while impeding replication of two RNA viruses. Antiviral Res 162:151–162

    Article  CAS  PubMed  Google Scholar 

  28. Chang JS, Chi SC (2015) GHSC70 is involved in the cellular entry of nervous necrosis virus. J Virol 89:61–70

    Article  PubMed  CAS  Google Scholar 

  29. Su YC, Wu JL, Hong JR (2011) Betanodavirus up-regulates chaperone GRP78 via ER stress: roles of GRP78 in viral replication and host mitochondria-mediated cell death. Apoptosis 16:272–287

    Article  CAS  PubMed  Google Scholar 

  30. Xu H, Yan F, Deng X, Wang J, Zou T, Ma X, Zhang X, Qi Y (2009) The interaction of white spot syndrome virus envelope protein VP28 with shrimp Hsc70 is specific and ATP-dependent. Fish Shellfish Immunol 26:414–421

    Article  CAS  PubMed  Google Scholar 

  31. Zhang WW, Jia KT, Jia P, Xiang YX, Lu XB, Liu W, Yi M (2020) Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLoS Pathog 16:e1008668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bandín I, Souto S (2020) Betanodavirus and VER disease: a 30-year research review. Pathogens 9:106

    Article  PubMed Central  CAS  Google Scholar 

  33. Chen NC, Yoshimura M, Guan HH, Wang TY, Misumi Y, Lin CC, Chuankhayan P, Nakagawa A, Chan SI, Tsukihara T, Chen TY, Chen CJ (2015) Crystal structures of a piscine betanodavirus: mechanisms of capsid assembly and viral infection. PLoS Pathog 11:e1005203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I (1992) Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187:368–371

    Article  CAS  PubMed  Google Scholar 

  35. Schneemann A, Ball AL, Delsert C, Johnson JE, Nishizawa T (2005) Family Nodaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Academic Press, San Diego, pp 865–872

    Google Scholar 

  36. Fenner BJ, Thiagarajan R, Chua HK, Kwang J (2006) Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 80:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, Nakai T (2005) Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 86:2807–2816

    Article  CAS  PubMed  Google Scholar 

  38. Chen LJ, Su YC, Hong JR (2009) Betanodavirus non-structural protein B1: a novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385:444–454

    Article  CAS  PubMed  Google Scholar 

  39. Nishizawa T, Furuhashi M, Nagai T, Nakai T, Muroga K (1997) Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol 63:1633–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okinaka Y, Nakai T (2008) Comparisons among the complete genomes of four betanodavirus genotypes. Dis Aquat Org 80:113–121

    Article  CAS  Google Scholar 

  41. Hata N, Okinaka Y, Iwamoto T, Kawato Y, Mori K, Nakai T (2010) Identification of RNA regions that determine temperature sensitivity in betanodaviruses. Arch Virol 155:1597–1606

    Article  CAS  PubMed  Google Scholar 

  42. Ito Y, Okinaka Y, Mori K, Sugaya T, Nishioka T, Oka M, Nakai T (2008) The variable region of RNA2 is sufficient to determine host specificity in betanodaviruses. Dis Aquat Org 79:199–205

    Article  CAS  Google Scholar 

  43. Iwamoto T, Okinaka Y, Mise K, Mori K, Arimoto M, Okuno T, Nakai T (2004) Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol 78:1256–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Souto S, Mérour E, Biacchesi S, Brémont M, Olveira JG, Bandín I (2015) In vitro and in vivo characterization of molecular determinants of virulence in reassortant betanodavirus. J Gen Virol 96:1287–1296

    Article  CAS  PubMed  Google Scholar 

  45. Souto S, Olveira JG, Dopazo CP, Borrego JJ, Bandín I (2018) Modification of betanodavirus virulence by substitutions in the 3′ terminal region of RNA2. J Gen Virol 99:1210–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iwamoto T, Mise K, Mori K, Arimoto M, Nakai T, Okuno T (2001) Establishment of an infectious RNA transcription system for Striped jack nervous necrosis virus, the type species of the betanodaviruses. J Gen Virol 82:2653–2662

    Article  CAS  PubMed  Google Scholar 

  47. Adachi K, Sumiyoshi K, Ariyasu R, Yamashita K, Zenke K, Okinaka Y (2010) Susceptibilities of medaka (Oryzias latipes) cell lines to a betanodavirus. Virol J 7:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Furusawa R, Okinaka Y, Nakai T (2006) Betanodavirus infection in the freshwater model fish medaka (Oryzias latipes). J Gen Virol 87:2333–2339

    Article  CAS  PubMed  Google Scholar 

  49. Ishikawa Y (2000) Medaka fish as a model system for vertebrate developmental genetics. BioEssays 22:487–495

    Article  CAS  PubMed  Google Scholar 

  50. Sasado T, Tanaka M, Kobayashi K, Sato T, Sakaizumi M, Naruse K (2010) The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences. Exp Anim 59:13–23

    Article  CAS  PubMed  Google Scholar 

  51. Wittbrodt J, Shima A, Schartl M (2002) Medaka–a model organism from the far East. Nat Rev Genet 3:53–64

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto Y, Oota H, Asaoka Y, Nishina H, Watanabe K, Bujnicki JM, Oda S, Kawamura S, Mitani H (2009) Medaka: a promising model animal for comparative population genomics. BMC Res Notes 2:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719

    Article  CAS  PubMed  Google Scholar 

  54. Grabher C, Wittbrodt J (2007) Meganuclease and transposon mediated transgenesis in medaka. Genome Biol 8:S10

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mitani H, Kamei Y, Fukamachi S, Od S, Sasaki T, Asakawa S, Todo T, Shimizu N (2006) The medaka genome: why we need multiple fish models in vertebrate functional genomics. Genome Dyn 2:165–182

    Article  CAS  PubMed  Google Scholar 

  56. Taniguchi Y, Takeda S, Furutani-Seiki M, Kamei Y, Todo T, Sasado T, Deguchi T, Kondoh H, Mudde J, Yamazoe M, Hidaka M, Mitani H, Toyoda A, Sakaki Y, Plasterk RH, Cuppen E (2006) Generation of medaka gene knockout models by target-selected mutagenesis. Genome Biol 7:R116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hirayama M, Mitani H, Watabe S (2006) Temperature-dependent growth rates and gene expression patterns of various medaka Oryzias latipes cell lines derived from different populations. J Comp Physiol 176:311–320

    Article  CAS  Google Scholar 

  58. Iwamoto T, Nakai T, Mori K, Arimoto M, Furusawa I (2000) Cloning of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Org 43:81–89

    Article  CAS  Google Scholar 

  59. Iwamoto T, Mori K, Arimoto M, Nakai T (1999) High permissivity of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Org 39:37–47

    Article  CAS  Google Scholar 

  60. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  61. Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arhel N, Kirchhoff F (2010) Host proteins involved in HIV infection: new therapeutic targets. Biochim Biophys Acta 1802:313–321

    Article  CAS  PubMed  Google Scholar 

  63. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  64. Kampmueller KM, Miller DJ (2005) The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. J Virol 79:6827–6837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sung YY, MacRae TH (2011) Heat shock proteins and disease control in aquatic organisms. J Aquac Res Dev S 2:006

    Google Scholar 

  66. Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 33:789–801

    Article  CAS  PubMed  Google Scholar 

  67. Ackerman A, Iwama GK (2001) Physiological and cellular response of juvenile rainbow trout to vibriosis. J Aquat Anim Health 13:173–180

    Article  Google Scholar 

  68. Cheng J, Li H, Huang Z, Zhang F, Bao L, Li Y, Chen L, Xue L, Chu W, Zhang J (2019) Expression analysis of the heat shock protein genes and cellular reaction in dojo loach (Misgurnus anguillicaudatus) under the different pathogenic invasion. Fish Shellfish Immunol 95:506–513

    Article  CAS  PubMed  Google Scholar 

  69. Deane EE, Li J, Woo NYS (2004) Modulated heat shock protein expression during pathogenic Vibrio alginolyticus stress of sea bream. Dis Aquat Org 62:205–215

    Article  CAS  Google Scholar 

  70. Forsyth RB, Candido PM, Babich SL, Iwama GK (1997) Stress protein expression in coho salmon with bacterial kidney disease. J Aquat Anim Health 9:18–25

    Article  Google Scholar 

  71. Yao L, Qu B, Ma Z, Chen Y, Tan Y, Gao Z, Zhang S (2019) Lectin-like and bacterial-agglutinating activities of heat shock proteins Hsp5 and Hsp90α from amphioxus Branchiostoma japonicum. Fish Shellfish Immunol 95:688–696

    Article  CAS  PubMed  Google Scholar 

  72. Chen YM, Kuo CE, Wang TY, Shie PS, Wang WC, Huang SL, Tsai TJ, Chen PP, Chen JC, Chen TY (2010) Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. Fish Shellfish Immunol 28:895–904

    Article  PubMed  CAS  Google Scholar 

  73. Hadden MK, Lubbers DJ, Blagg BS (2006) Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Curr Top Med Chem 6:1173–1182

    Article  CAS  PubMed  Google Scholar 

  74. Aalinkeel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz SA (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68:1773–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hosokawa N, Hirayoshi K, Kudo H, Takechi H, Aoike A, Kawai K, Nagata K (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 12:3490–3498

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gonzalez O, Fontanes V, Raychaudhuri S, Loo R, Loo J, Arumugaswami V, Sun R, Dasgupta A, French SW (2009) The heat shock protein inhibitor Quercetin attenuates hepatitis C virus production. Hepatology 50:1756–1764

    Article  CAS  PubMed  Google Scholar 

  77. Hu J, Seeger C (1996) Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci USA 93:1060–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, Moriishi K, Matsuura Y (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25:5015–5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu X, Tao P, Nie H (2011) Geldanamycin is effective in the treatment of herpes simplex virus epithelial keratitis in a rabbit model. Clin Experiment Ophthalmol 39:779–783

    Article  PubMed  Google Scholar 

  80. Chase G, Deng T, Fodor E, Leung BW, Mayer D, Schwemmle M, Brownlee G (2008) Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology 377:431–439

    Article  CAS  PubMed  Google Scholar 

  81. Smith DR, McCarthy S, Chrovian A, Olinger G, Stossel A, Geisbert TW, Hensley LE, Connor JH (2010) Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res 87:187–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Csermely P, Schnaider T, Soti C, Prohaszka Z, Narda G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  CAS  PubMed  Google Scholar 

  83. Nascimento R, Costa H, Parkhouse RM (2012) Virus manipulation of cell cycle. Protoplasma 249:519–528

    Article  CAS  PubMed  Google Scholar 

  84. Thaker SK, Ch′ng J, Christofk HR (2019) Viral hijacking of cellular metabolism. BMC Biol 17:59

    Article  PubMed  PubMed Central  Google Scholar 

  85. Verdonck S, Nemegeer J, Vandenabeele P, Maelfait J (2022) Viral manipulation of host cell necroptosis and pyroptosis. Trends Microbiol (in press)

  86. Wu W, Luo X, Ren M (2022) Clearance or Hijack: Universal interplay mechanisms between viruses and host autophagy from plants to animals. Front Cell Infect Microbiol 11:786348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. H. Mitani, University of Tokyo, for providing the medaka cell lines. This work was supported in part by a grant-in-aid for the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) and by a grant-in-aid for Scientific Research (20380111) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Funding

This work was supported in part by a grant-in-aid for the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) and by a grant-in-aid for Scientific Research (20380111) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

KZ performed the experiments and prepared the manuscript. YO prepared the manuscript and supervised the experiments described in the article.

Corresponding author

Correspondence to Yasushi Okinaka.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Research involving human participants and/or animals

No humans or animals were used in this study.

Additional information

Handling Editor: Ioly Kotta-Loizou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenke, K., Okinaka, Y. Multiple isoforms of HSP70 and HSP90 required for betanodavirus multiplication in medaka cells. Arch Virol 167, 1961–1975 (2022). https://doi.org/10.1007/s00705-022-05489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05489-5

Navigation