Skip to main content
Log in

Comparison of clinical performance of two high-throughput liquid bead microarray assays, GeneFinder and CareGENE, for cervical screening in the general population

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Recently, a clinical need for an improved human papilloma virus (HPV) test that covers a broad range of genotypes has emerged as a valuable primary screening tool for cervical lesions. The liquid bead microarray (LBMA) assay is a recently developed high-throughput platform covering a broad range of genotypes. Here, we compared the clinical performance of two recently developed LBMA assays, GeneFinderTM HPV Liquid Bead Microarray (GeneFinder) and CareGENETM HPV genotyping kit-O (CareGENE), in the Korean general population. A total of 3,148 cervical swabs were tested by the GeneFinder and CareGENE assays. Cases with discrepant results between the two assays were subjected to direct sequencing as a reference method for evaluating the performance of the two LBMA assays. Among all swabs tested, 12.6% showed HPV positivity, and the prevalent HPV genotypes were HPV53, 70, 16, 39, and 51, in that order. The concordance rates between the two assays for the detection of HPV and for genotyping were 96.6% (kappa = 0.836) and 94.5% (kappa = 0.779), respectively. The two LBMA assays showed comparable sensitivity and specificity for HPV detection (GeneFinder: sensitivity 94.4% and specificity 98.7%, CareGENE: sensitivity 89.8% and specificity 99.6%) and for genotyping (GeneFinder: sensitivity 91.0% and specificity 96.6%, CareGENE: sensitivity 90.2% and specificity 99.1%). This is the first demonstration that CareGENE has comparable clinical performance to GeneFinder, which has been established to show excellent performance for screening HPV in previous studies. Both LBMA platforms are thus considered to be valuable tools for HPV detection and genotyping to improve cervical screening in the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wentzensen N, Vinokurova S, MvK Doeberitz (2004) Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64(11):3878–3884. https://doi.org/10.1158/0008-5472.Can-04-0009

    Article  CAS  PubMed  Google Scholar 

  2. Cuzick J, Szarewski A, Cubie H, Hulman G, Kitchener H, Luesley D, McGoogan E, Menon U, Terry G, Edwards R, Brooks C, Desai M, Gie C, Ho L, Jacobs I, Pickles C, Sasieni P (2003) Management of women who test positive for high-risk types of human papillomavirus: the HART study. Lancet (London, England) 362(9399):1871–1876. https://doi.org/10.1016/s0140-6736(03)14955-0

    Article  CAS  Google Scholar 

  3. Poljak M, Kocjan BJ, Ostrbenk A, Seme K (2016) Commercially available molecular tests for human papillomaviruses (HPV): 2015 update. J Clin Virol 76(Suppl 1):S3. https://doi.org/10.1016/j.jcv.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  4. Jun S-Y, Park ES, Kim J, Kang J, Lee JJ, Bae Y, Kim S-I, Maeng L-S (2015) Comparison of the Cobas 4800 HPV and HPV 9G DNA Chip tests for detection of high-risk human papillomavirus in cervical specimens of women with consecutive positive hpv tests but negative pap smears. PLoS One 10(10):e0140336. https://doi.org/10.1371/journal.pone.0140336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castle PE, Sadorra M, Lau T, Aldrich C, Garcia FAR, Kornegay J (2009) Evaluation of a prototype real-time PCR assay for carcinogenic human papillomavirus (HPV) detection and simultaneous HPV genotype 16 (HPV16) and HPV18 genotyping. J Clin Microbiol 47(10):3344–3347. https://doi.org/10.1128/JCM.00725-09

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nayar R, Wilbur DC (2015) The pap test and Bethesda 2014. Acta Cytol 59(2):121–132

    Article  CAS  Google Scholar 

  7. Halec G, Schmitt M, Dondog B, Sharkhuu E, Wentzensen N, Gheit T, Tommasino M, Kommoss F, Bosch FX, Franceschi S, Clifford G, Gissmann L, Pawlita M (2013) Biological activity of probable/possible high-risk human papillomavirus types in cervical cancer. Int J Cancer 132(1):63–71. https://doi.org/10.1002/ijc.27605

    Article  CAS  PubMed  Google Scholar 

  8. Katki HA, Kinney WK, Fetterman B, Lorey T, Poitras NE, Cheung L, Demuth F, Schiffman M, Wacholder S, Castle PE (2011) Cervical cancer risk for women undergoing concurrent testing for human papillomavirus and cervical cytology: a population-based study in routine clinical practice. Lancet Oncol 12(7):663–672. https://doi.org/10.1016/S1470-2045(11)70145-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Castle PE, Gravitt PE, Solomon D, Wheeler CM, Schiffman M (2008) Comparison of linear array and line blot assay for detection of human papillomavirus and diagnosis of cervical precancer and cancer in the atypical squamous cell of undetermined significance and low-grade squamous intraepithelial lesion triage study. J Clin Microbiol 46(1):109–117. https://doi.org/10.1128/jcm.01667-07

    Article  PubMed  Google Scholar 

  10. Dunn ST, Allen RA, Wang S, Walker J, Schiffman M (2007) DNA extraction: an understudied and important aspect of HPV genotyping using PCR-based methods. J Virol Methods 143(1):45–54. https://doi.org/10.1016/j.jviromet.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  11. Ko K, Kwon MJ, Lee EH, Woo HY, Park H (2017) Comparison of GeneFinder human papillomavirus (HPV) liquid beads microarray PCR Kit and Hybrid capture 2 assay for detection of HPV Infection. J Clin Lab Anal 31:2. https://doi.org/10.1002/jcla.22025

    Article  CAS  Google Scholar 

  12. Cho EJ, Do JH, Kim YS, Bae S, Ahn WS (2011) Evaluation of a liquid bead array system for high-risk human papillomavirus detection and genotyping in comparison with Hybrid Capture II, DNA chip and sequencing methods. J Med Microbiol 60(2):162–171. https://doi.org/10.1099/jmm.0.021642-0

    Article  CAS  PubMed  Google Scholar 

  13. Ozaki S, Kato K, Abe Y, Hara H, Kubota H, Kubushiro K, Kawahara E, Inoue M (2014) Analytical performance of newly developed multiplex human papillomavirus genotyping assay using Luminex xMAP™ technology (Mebgen™ HPV Kit). J Virol Methods 204:73–80. https://doi.org/10.1016/j.jviromet.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  14. Feng Q, Cherne S, Winer RL, Balasubramanian A, Lee S-K, Hawes SE, Kiviat NB, Koutsky LA (2009) Development and evaluation of a liquid bead microarray assay for genotyping genital human papillomaviruses. J Clin Microbiol 47(3):547–553. https://doi.org/10.1128/JCM.01707-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang HL, Zhu HH, Zhou LF, Chen F, Chen Z (2006) Genotyping of human papillomavirus in cervical lesions by L1 consensus PCR and the Luminex xMAP system. J Med Microbiol 55(Pt 6):715–720. https://doi.org/10.1099/jmm.0.46493-0

    Article  CAS  PubMed  Google Scholar 

  16. Schmitt M, Bravo IG, Snijders PJ, Gissmann L, Pawlita M, Waterboer T (2006) Bead-based multiplex genotyping of human papillomaviruses. J Clin Microbiol 44(2):504–512. https://doi.org/10.1128/jcm.44.2.504-512.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin MS, Lee H, Kim MA, Park IA, Lee C, An HJ, Shim B, Moon JH, Won JK, Ryu HS (2018) Novel cytomorphologic characteristics suggesting human papillomavirus infection in patients diagnosed as negative for intraepithelial lesion or malignancy and a comparison of diagnostic performance of three human papillomavirus tests. Diagn Cytopathol 46(10):833–839. https://doi.org/10.1002/dc.24049

    Article  PubMed  Google Scholar 

  18. Ryu HS, Park IA, Park SY, Jung YY, Park SH, Shin HC (2013) A pilot study evaluating liquid-based fine needle aspiration cytology of breast lesions: a cytomorphological comparison of SurePath(R) liquid-based preparations and conventional smears. Acta Cytol 57(4):391–399. https://doi.org/10.1159/000351306

    Article  PubMed  Google Scholar 

  19. Yoon YA, Kim BH, Heo SH, Kim HJ, Choi YJ (2018) Comparative evaluation of the Omniplex-HPV and RFMP HPV PapilloTyper for detecting human papillomavirus genotypes in cervical specimens. Adv Virol 163(4):969–976. https://doi.org/10.1007/s00705-017-3687-4

    Article  CAS  Google Scholar 

  20. Hong G, Park YG, Jin HW, Choi SK, Chi HY, Cho WJ, Lee JH, Han S, Hong SP (2018) Comparison of the clinical performance of OmniPlex-HPV and GeneFinder HPV for the detection and genotyping of human papillomaviruses in cervical specimens. J Med Microbiol 67(9):1279–1286. https://doi.org/10.1099/jmm.0.000798

    Article  CAS  PubMed  Google Scholar 

  21. Choi J, Park Y, Lee EH, Kim S, Kim JH, Kim HS (2013) Detection and genotyping of human papillomavirus by five assays according to cytologic results. J Virol Methods 187(1):79–84. https://doi.org/10.1016/j.jviromet.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  22. Bruni L, Diaz M, Castellsagué M, Ferrer E, Bosch FX, de Sanjosé S (2010) Cervical human papillomavirus prevalence in 5 continents: Meta-analysis of 1 million women with normal cytological findings. J Infect Dis 202(12):1789–1799. https://doi.org/10.1086/657321

    Article  PubMed  Google Scholar 

  23. de Sanjosé S, Diaz M, Castellsagué X, Clifford G, Bruni L, Muñoz N, Bosch FX (2007) Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis 7(7):453–459. https://doi.org/10.1016/S1473-3099(07)70158-5

    Article  PubMed  Google Scholar 

  24. Schmitt M, Depuydt C, Benoy I, Bogers J, Antoine J, Arbyn M, Pawlita M (2013) Prevalence and viral load of 51 genital human papillomavirus types and three subtypes. Int J Cancer 132(10):2395–2403. https://doi.org/10.1002/ijc.27891

    Article  CAS  PubMed  Google Scholar 

  25. Iftner T, Villa LL (2003) Chapter 12: human papillomavirus technologies. J Natl Cancer Inst Monogr 31:80–88

    Article  Google Scholar 

  26. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin HR, Vallejos CS, de Ruiz PA, Lima MA, Guimera N, Clavero O, Alejo M, Llombart-Bosch A, Cheng-Yang C, Tatti SA, Kasamatsu E, Iljazovic E, Odida M, Prado R, Seoud M, Grce M, Usubutun A, Jain A, Suarez GA, Lombardi LE, Banjo A, Menendez C, Domingo EJ, Velasco J, Nessa A, Chichareon SC, Qiao YL, Lerma E, Garland SM, Sasagawa T, Ferrera A, Hammouda D, Mariani L, Pelayo A, Steiner I, Oliva E, Meijer CJ, Al-Jassar WF, Cruz E, Wright TC, Puras A, Llave CL, Tzardi M, Agorastos T, Garcia-Barriola V, Clavel C, Ordi J, Andujar M, Castellsague X, Sanchez GI, Nowakowski AM, Bornstein J, Munoz N, Bosch FX (2010) Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 11(11):1048–1056. https://doi.org/10.1016/s1470-2045(10)70230-8

    Article  PubMed  Google Scholar 

  27. Agreda PM, Beitman GH, Gutierrez EC, Harris JM, Koch KR, LaViers WD, Leitch SV, Maus CE, McMillian RA, Nussbaumer WA, Palmer ML, Porter MJ, Richart GA, Schwab RJ, Vaughan LM (2013) Long-term stability of human genomic and human papillomavirus DNA stored in BD SurePath and Hologic PreservCyt liquid-based cytology media. J Clin Microbiol 51(8):2702–2706. https://doi.org/10.1128/jcm.00759-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Suk Ryu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Handling Editor: Carolina Scagnolari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J.H., Jeong, K., Kim, K. et al. Comparison of clinical performance of two high-throughput liquid bead microarray assays, GeneFinder and CareGENE, for cervical screening in the general population. Arch Virol 164, 2699–2706 (2019). https://doi.org/10.1007/s00705-019-04379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04379-7

Navigation