Skip to main content

Advertisement

Log in

Conserved nucleotides in the terminus of the 3′ UTR region are important for the replication and infectivity of porcine reproductive and respiratory syndrome virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The 3′ untranslated region (3′ UTR), including the poly (A) tail, reportedly plays an important role in arterivirus replication, but the roles of the cis-acting elements present in the 3′ UTR of porcine reproductive and respiratory syndrome virus (PRRSV) remain largely unknown. In the present study, PCR-based mutagenic analysis was conducted on the 3′ UTR of PRRSV infectious full-length cDNA clone pAPRRS to investigate the structure and function of the conserved terminal nucleotides between the poly (A) tail and the 3′ UTR region. Our findings indicated that the conservation of the primary sequence of the 3′ terminal nucleotides, rather than the surrounding secondary structure, was vital for viral replication and infectivity. Four nucleotides (nt) (5′-15517AAUU15520-3′) at the 3′ proximal end of the 3′ UTR and the dinucleotide 5′-AU-3′ exerted an important regulatory effect on viral viability. Of the five 3′-terminal nucleotides of the 3′ UTR (5′-15503AACCA15507-3′), at least three, including the last dinucleotide (5′-CA-3′), were essential for maintaining viral infectivity. Taken together, the 3′-terminal conserved sequence plays a critical role in PRRSV replication and may function as a contact site for specific assembly of the replication complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albina E (1997) Porcine reproductive and respiratory syndrome: ten years of experience (1986–1996) with this undesirable viral infection. Vet Res 28:305–352

    CAS  PubMed  Google Scholar 

  2. Allende R, Lewis TL, Lu Z, Rock DL, Kutish GF, Ali A, Doster AR, Osorio FA (1999) North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol 80(Pt 2):307–315

    CAS  PubMed  Google Scholar 

  3. Beerens N, Selisko B, Ricagno S, Imbert I, van der Zanden L, Snijder EJ, Canard B (2007) De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol 81:8384–8395

    Article  CAS  PubMed  Google Scholar 

  4. Cheng CP, Tsai CH (1999) Structural and functional analysis of the 3′ untranslated region of bamboo mosaic potexvirus genomic RNA. J Mol Biol 288:555–565

    Article  CAS  PubMed  Google Scholar 

  5. Choi YJ, Yun SI, Kang SY, Lee YM (2006) Identification of 5′ and 3′ cis-acting elements of the porcine reproductive and respiratory syndrome virus: acquisition of novel 5′ AU-rich sequences restored replication of a 5′-proximal 7-nucleotide deletion mutant. J Virol 80:723–736

    Article  CAS  PubMed  Google Scholar 

  6. Christianson WT, Collins JE, Benfield DA, Harris L, Gorcyca DE, Chladek DW, Morrison RB, Joo HS (1992) Experimental reproduction of swine infertility and respiratory syndrome in pregnant sows. Am J Vet Res 53:485–488

    CAS  PubMed  Google Scholar 

  7. Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, Goyal SM, McCullough S, Morrison RB, Joo HS et al (1992) Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest 4:117–126

    Article  CAS  PubMed  Google Scholar 

  8. De Rijk P, Wuyts J, De Wachter R (2003) RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics (Oxford, England) 19:299–300

    Article  Google Scholar 

  9. den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC, Spaan WJ (1991) Equine arteritis virus is not a togavirus but belongs to the coronavirus like superfamily. J Virol 65:2910–2920

    Google Scholar 

  10. Edgil D, Harris E (2006) End-to-end communication in the modulation of translation by mammalian RNA viruses. Virus Res 119:43–51

    Article  CAS  PubMed  Google Scholar 

  11. Firth AE, Zevenhoven-Dobbe JC, Wills NM, Go YY, Balasuriya UB, Atkins JF, Snijder EJ, Posthuma CC (2011) Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J Gen Virol 92:1097–1106

    Article  CAS  PubMed  Google Scholar 

  12. Gao F, Lu J, Yao H, Wei Z, Yang Q, Yuan S (2012) Cis-acting structural element in 5′ UTR is essential for infectivity of porcine reproductive and respiratory syndrome virus. Virus Res 163:108–119

    Article  CAS  PubMed  Google Scholar 

  13. Hardy RW (2006) The role of the 3′ terminus of the Sindbis virus genome in minus-strand initiation site selection. Virology 345:520–531

    Article  CAS  PubMed  Google Scholar 

  14. Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP (2011) Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92:1107–1116

    Article  CAS  PubMed  Google Scholar 

  15. Khromykh AA, Kondratieva N, Sgro JY, Palmenberg A, Westaway EG (2003) Significance in replication of the terminal nucleotides of the flavivirus genome. J Virol 77:10623–10629

    Article  CAS  PubMed  Google Scholar 

  16. Kuo L, Fearns R, Collins PL (1997) Analysis of the gene start and gene end signals of human respiratory syncytial virus: quasi-templated initiation at position 1 of the encoded mRNA. J Virol 71:4944–4953

    CAS  PubMed  Google Scholar 

  17. Liu Y, Wimmer E, Paul AV (2009) Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta 1789:495–517

    Article  CAS  PubMed  Google Scholar 

  18. Lu J, Gao F, Wei Z, Liu P, Liu C, Zheng H, Li Y, Lin T, Yuan S (2011) A 5′-proximal stem-loop structure of 5′ untranslated region of porcine reproductive and respiratory syndrome virus genome is key for virus replication. Virol J 8:172

    Article  CAS  PubMed  Google Scholar 

  19. Lv J, Zhang J, Sun Z, Liu W, Yuan S (2008) An infectious cDNA clone of a highly pathogenic porcine reproductive and respiratory syndrome virus variant associated with porcine high fever syndrome. J Gen Virol 89:2075–2079

    Article  CAS  PubMed  Google Scholar 

  20. Nelsen CJ, Murtaugh MP, Faaberg KS (1999) Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 73:270–280

    CAS  PubMed  Google Scholar 

  21. Park BK, Joo HS, Dee SA, Pijoan C (1995) Evaluation of an indirect fluorescent IgM antibody test for the detection of pigs with recent infection of porcine reproductive and respiratory syndrome virus. J Vet Diagn Invest 7:544–546

    Article  CAS  PubMed  Google Scholar 

  22. Pasternak AO, Spaan WJ, Snijder EJ (2006) Nidovirus transcription: how to make sense…? J Gen Virol 87:1403–1421

    Article  CAS  PubMed  Google Scholar 

  23. Paton DJ, Brown IH, Vaz EK (1991) An ELISA for the detection of serum antibodies to both transmissible gastroenteritis virus and porcine respiratory coronavirus. Br Vet J 147:370–372

    Article  CAS  PubMed  Google Scholar 

  24. Sawicki SG, Sawicki DL (1995) Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380:499–506

    Article  CAS  PubMed  Google Scholar 

  25. Shen S, Kwang J, Liu W, Liu DX (2000) Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion. Arch Virol 145:871–883

    Article  CAS  PubMed  Google Scholar 

  26. Snijder EJ, Meulenberg JJ (1998) The molecular biology of arteriviruses. J Gen Virol 79(Pt 5):961–979

    CAS  PubMed  Google Scholar 

  27. Sun Z, Wang JY, Zhang JW, Qin AJ, Yuan SS (2007) Identification of porcine reproductive and respiratory syndrome virus regulation sequence in 3′-untranslated region. Wei Sheng Wu Xue Bao 47:774–778

    CAS  PubMed  Google Scholar 

  28. Sun Z, Liu C, Tan F, Gao F, Liu P, Qin A, Yuan S (2010) Identification of dispensable nucleotide sequence in 3′ untranslated region of porcine reproductive and respiratory syndrome virus. Virus Res 154:38–47

    Article  CAS  PubMed  Google Scholar 

  29. Tilgner M, Shi PY (2004) Structure and function of the 3′ terminal six nucleotides of the west nile virus genome in viral replication. J Virol 78:8159–8171

    Article  CAS  PubMed  Google Scholar 

  30. Van Den Born E, Gultyaev AP, Snijder EJ (2004) Secondary structure and function of the 5′-proximal region of the equine arteritis virus RNA genome. RNA 10:424–437

    Article  Google Scholar 

  31. Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F et al (1991) Mystery swine disease in the Netherlands: the isolation of Lelystad virus. Vet Q 13:121–130

    Article  CAS  PubMed  Google Scholar 

  32. Wensvoort G, de Kluyver EP, Pol JM, Wagenaar F, Moormann RJ, Hulst MM, Bloemraad R, den Besten A, Zetstra T, Terpstra C (1992) Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome: a review of mystery swine disease research at Lelystad. Vet Microbiol 33:185–193

    Article  CAS  PubMed  Google Scholar 

  33. Wu WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, Christopher-Hennings J, Nelson EA (2001) A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 287:183–191

    Article  CAS  PubMed  Google Scholar 

  34. Yu D, Lv J, Sun Z, Zheng H, Lu J, Yuan S (2009) Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type II porcine reproductive and respiratory syndrome virus. Virology 383:22–31

    Article  CAS  PubMed  Google Scholar 

  35. Yuan S, Wei Z (2008) Construction of infectious cDNA clones of PRRSV: separation of coding regions for nonstructural and structural proteins. Sci China 51:271–279

    Article  CAS  Google Scholar 

  36. Zheng H, Sun Z, Zhu XQ, Long J, Lu J, Lv J, Yuan S (2010) Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus. Virus Res 148:8–16

    Article  CAS  PubMed  Google Scholar 

  37. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a grant from the Natural Sciences Foundation of China (30972204, 30901078 and 31100121), the Basic Research Project grant (2013JB02), the EU Frame 7 Program Project (245141), National High Tech Plan (863 Plan) (2011AA10A208-2), NSFC-Guangdong Joint Foundation (U0931003), International Sci & Tech Cooperation Program (2010DFB33920). We thank Dr. Ying Fang of South Dakota State University for generously providing the monoclonal antibody against the PRRSV N protein.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangzhi Tong or Fei Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Liu, C., Liu, P. et al. Conserved nucleotides in the terminus of the 3′ UTR region are important for the replication and infectivity of porcine reproductive and respiratory syndrome virus. Arch Virol 158, 1719–1732 (2013). https://doi.org/10.1007/s00705-013-1661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1661-3

Keywords

Navigation