Skip to main content

Advertisement

Log in

Marek’s disease virus microRNA designated Mdv1-pre-miR-M4 targets both cellular and viral genes

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Mdv1-miR-M4 is one of 25 microRNAs (miRNAs) expressed by Marek’s disease virus (MDV-1), an oncogenic alphaherpesvirus that induces fatal T-cell lymphoma in chickens. Mdv1-miR-M4 was shown to be the second functional viral ortholog of miR-155, a cellular miRNA that plays a crucial role in several physiological and pathological processes in lymphocyte biology. In this study, we investigated a panel of putative mdv1-miR-M4 targets involved in gene networks affecting both cellular and viral life cycles. Using luciferase reporter assays, we showed that mdv1-miR-M4-5P and miR-155 efficiently targeted a common set of 3′ untranslated regions (3′UTR) of six cellular genes (GPM6B, RREB1, c-Myb, MAP3K7IP2, PU.1 and C/EBP). In addition, we also investigated the interactions between mdv1-miR-M4-5P and mdv1-miR-M43P and viral mRNAs encoding UL28 and UL32 in both reporter and western blot assays. Mdv1-miR-M4 specifically inhibited the translation of these two viral proteins, which are involved in the cleavage/packaging of herpesvirus DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded micrornas. Science 304(5671):734–736

    Article  CAS  PubMed  Google Scholar 

  2. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of micrornas of the herpesvirus family. Nat Methods 2(4):269–276

    Article  CAS  PubMed  Google Scholar 

  3. Gottwein E, Cullen BR (2008) Viral and cellular micrornas as determinants of viral pathogenesis and immunity. Cell Host Microbe 3(6):375–387

    Article  CAS  PubMed  Google Scholar 

  4. Boss IW, Plaisance KB, Renne R (2009) Role of virus-encoded micrornas in herpesvirus biology. Trends Microbiol 17(12):544–553

    Article  CAS  PubMed  Google Scholar 

  5. Burnside J, Bernberg E, Anderson A, Lu C, Meyers BC, Green PJ, Jain N, Isaacs G, Morgan RW (2006) Marek’s disease virus encodes micrornas that map to meq and the latency-associated transcript. J Virol 80(17):8778–8786

    Article  CAS  PubMed  Google Scholar 

  6. Burnside J, Morgan RW (2007) Genomics and marek’s disease virus. Cytogenet Genome Res 117(1–4):376–387

    Article  CAS  PubMed  Google Scholar 

  7. Burnside J, Ouyang M, Anderson A, Bernberg E, Lu C, Meyers BC, Green PJ, Markis M, Isaacs G, Huang E, Morgan RW (2008) Deep sequencing of chicken micrornas. BMC Genomics 9:185

    Article  PubMed  Google Scholar 

  8. Morgan R, Anderson A, Bernberg E, Kamboj S, Huang E, Lagasse G, Isaacs G, Parcells M, Meyers BC, Green PJ, Burnside J (2008) Sequence conservation and differential expression of marek’s disease virus micrornas. J Virol 82(24):12213–12220

    Article  CAS  PubMed  Google Scholar 

  9. Yao Y, Zhao Y, Xu H, Smith LP, Lawrie CH, Watson M, Nair V (2008) Microrna profile of marek’s disease virus-transformed t-cell line msb-1: predominance of virus-encoded micrornas. J Virol 82(8):4007–4015

    Article  CAS  PubMed  Google Scholar 

  10. Areste C, Blackbourn DJ (2009) Modulation of the immune system by kaposi’s sarcoma-associated herpesvirus. Trends Microbiol 17(3):119–129

    Article  CAS  PubMed  Google Scholar 

  11. Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, Jaker C, Hock J, Meister G, Grasser FA (2008) Epstein-barr virus-encoded microrna mir-bart2 down-regulates the viral DNA polymerase balf5. Nucleic Acids Res 36(2):666–675

    Article  CAS  PubMed  Google Scholar 

  12. Stern-Ginossar N, Saleh N, Goldberg MD, Prichard M, Wolf DG, Mandelboim O (2009) Analysis of human cytomegalovirus-encoded microrna activity during infection. J Virol 83(20):10684–10693

    Article  CAS  PubMed  Google Scholar 

  13. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagel S, Hengel H, Altuvia Y, Margalit H, Mandelboim O (2007) Host immune system gene targeting by a viral mirna. Science 317(5836):376–381

    Article  CAS  PubMed  Google Scholar 

  14. Xia T, O’Hara A, Araujo I, Barreto J, Carvalho E, Sapucaia JB, Ramos JC, Luz E, Pedroso C, Manrique M, Toomey NL, Brites C, Dittmer DP, Harrington WJ Jr (2008) Ebv micrornas in primary lymphomas and targeting of cxcl-11 by ebv-mir-bhrf1-3. Cancer Res 68(5):1436–1442

    Article  CAS  PubMed  Google Scholar 

  15. Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM, To KF, Kwong DL, Tsao SW, Jin DY (2008) An epstein-barr virus-encoded microrna targets puma to promote host cell survival. J Exp Med 205(11):2551–2560

    Article  CAS  PubMed  Google Scholar 

  16. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, Renne R (2007) Identification of cellular genes targeted by kshv-encoded micrornas. PLoS Pathog 3(5):e65

    Article  PubMed  Google Scholar 

  17. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of mir-155. J Virol 81(23):12836–12845

    Article  CAS  PubMed  Google Scholar 

  18. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, Braich R, Manoharan M, Soutschek J, Ohler U, Cullen BR (2007) A viral microrna functions as an orthologue of cellular mir-155. Nature 450(7172):1096–1099

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Y, Yao Y, Xu H, Lambeth L, Smith LP, Kgosana L, Wang X, Nair V (2009) A functional microrna-155 ortholog encoded by the oncogenic marek’s disease virus. J Virol 83(1):489–492

    Article  CAS  PubMed  Google Scholar 

  20. Tili E, Croce CM, Michaille JJ (2009) Mir-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 28(5):264–284

    Article  CAS  PubMed  Google Scholar 

  21. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) Mir-155 gene: a typical multifunctional microrna. Biochim Biophys Acta

  22. Teng G, Papavasiliou FN (2008) Shhh! silencing by microrna-155. Philos Trans R Soc Lond B Biol Sci 364(1517):631–637

    Google Scholar 

  23. Pichler K, Schneider G, Grassmann R (2008) Microrna mir-146a and further oncogenesis-related cellular micrornas are dysregulated in htlv-1-transformed t lymphocytes. Retrovirology 5:100

    Article  PubMed  Google Scholar 

  24. Bolisetty MT, Dy G, Tam W, Beemon KL (2009) Reticuloendotheliosis virus strain t induces mir-155, which targets jarid2 and promotes cell survival. J Virol 83(23):12009–12017

    Article  CAS  PubMed  Google Scholar 

  25. Lu F, Weidmer A, Liu CG, Volinia S, Croce CM, Lieberman PM (2008) Epstein-barr virus-induced mir-155 attenuates nf-kappab signaling and stabilizes latent virus persistence. J Virol 82(21):10436–10443

    Article  CAS  PubMed  Google Scholar 

  26. Yin Q, Wang X, Fewell C, Cameron J, Zhu H, Baddoo M, Lin Z, Flemington EK (2010) Microrna mir-155 inhibits bone morphogenetic protein (bmp) signaling and bmp-mediated epstein-barr virus reactivation. J Virol 84(13):6318–6327. doi:JVI.00635-10[pii]10.1128/JVI.00635-10

    Article  CAS  PubMed  Google Scholar 

  27. Yao Y, Zhao Y, Smith LP, Lawrie CH, Saunders NJ, Watson M, Nair V (2009) Differential expression of micrornas in marek’s disease virus-transformed t-lymphoma cell lines. J Gen Virol 90(Pt 7):1551–1559

    Article  CAS  PubMed  Google Scholar 

  28. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific micrornas from mouse. Curr Biol 12(9):735–739. doi:S0960982202008096[pii]

    Article  CAS  PubMed  Google Scholar 

  29. Tam W, Ben-Yehuda D, Hayward WS (1997) Bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding rna. Mol Cell Biol 17(3):1490–1502

    CAS  PubMed  Google Scholar 

  30. Tam W, Hughes SH, Hayward WS, Besmer P (2002) Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding rna, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 76(9):4275–4286

    Article  CAS  PubMed  Google Scholar 

  31. Akiyama Y, Kato S, Iwa N (1973) Continuous cell culture from lymphoma of marek’s disease. Biken J 16(4):177–179

    CAS  PubMed  Google Scholar 

  32. Hirai K, Yamada M, Arao Y, Kato S, Nii S (1990) Replicating marek’s disease virus (mdv) serotype 2 DNA with inserted mdv serotype 1 DNA sequences in a marek’s disease lymphoblastoid cell line msb1-41c. Arch Virol 114(3–4):153–165

    Article  CAS  PubMed  Google Scholar 

  33. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microrna target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818

    Article  CAS  PubMed  Google Scholar 

  34. Fragnet L, Kut E, Rasschaert D (2005) Comparative functional study of the viral telomerase rna based on natural mutations. J Biol Chem 280(25):23502–23515

    Article  CAS  PubMed  Google Scholar 

  35. Djeraba-AitLounis A, Soubieux D, Klapper W, Rasschaert D (2004) Induction of telomerase activity in avian lymphoblastoid cell line transformed by marek’s disease virus, mdcc-msb1. Vet Pathol 41(4):405–407

    Article  CAS  PubMed  Google Scholar 

  36. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  37. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P (2009) Microrna-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA 106(8):2735–2740

    Article  CAS  PubMed  Google Scholar 

  38. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) Micrornas to nanog, oct4 and sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128

    Article  CAS  PubMed  Google Scholar 

  39. Yeung ML, Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N, Matsuoka M, Jeang KT (2008) Roles for micrornas, mir-93 and mir-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human t-cell lymphotrophic virus 1. Cancer Res 68(21):8976–8985

    Article  CAS  PubMed  Google Scholar 

  40. O’Hara AJ, Chugh P, Wang L, Netto EM, Luz E, Harrington WJ, Dezube BJ, Damania B, Dittmer DP (2009) Pre-micro rna signatures delineate stages of endothelial cell transformation in kaposi sarcoma. PLoS Pathog 5(4):e1000389

    Article  PubMed  Google Scholar 

  41. Umbach JL, Cullen BR (2009) In-depth analysis of kaposi’s sarcoma-associated herpesvirus microrna expression provides insights into the mammalian microrna-processing machinery. J Virol 84(2):695–703

    Article  PubMed  Google Scholar 

  42. Godshalk SE, Bhaduri-McIntosh S, Slack FJ (2008) Epstein-barr virus-mediated dysregulation of human microrna expression. Cell Cycle 7(22):3595–3600

    CAS  PubMed  Google Scholar 

  43. Cameron JE, Fewell C, Yin Q, McBride J, Wang X, Lin Z, Flemington EK (2008) Epstein-barr virus growth/latency iii program alters cellular microrna expression. Virology 382(2):257–266

    Article  CAS  PubMed  Google Scholar 

  44. Wang FZ, Weber F, Croce C, Liu CG, Liao X, Pellett PE (2008) Human cytomegalovirus infection alters the expression of cellular microrna species that affect its replication. J Virol 82(18):9065–9074

    Article  CAS  PubMed  Google Scholar 

  45. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microrna* species has substantial influence on microrna and 3’ utr evolution. Nat Struct Mol Biol 15(4):354–363

    Article  CAS  PubMed  Google Scholar 

  46. Okamura K, Liu N, Lai EC (2009) Distinct mechanisms for microrna strand selection by drosophila argonautes. Mol Cell 36(3):431–444

    Article  CAS  PubMed  Google Scholar 

  47. Tomari Y, Du T, Zamore PD (2007) Sorting of drosophila small silencing rnas. Cell 130(2):299–308

    Article  CAS  PubMed  Google Scholar 

  48. Lin EA, Kong L, Bai XH, Luan Y, Liu CJ (2009) Mir-199a, a bone morphogenic protein 2-responsive microrna, regulates chondrogenesis via direct targeting to smad1. J Biol Chem 284(17):11326–11335

    Article  CAS  PubMed  Google Scholar 

  49. Ro S, Park C, Young D, Sanders KM, Yan W (2007) Tissue-dependent paired expression of mirnas. Nucleic Acids Res 35(17):5944–5953

    Article  CAS  PubMed  Google Scholar 

  50. Bartel DP (2004) Micrornas: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  51. Bartel DP (2009) Micrornas: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  Google Scholar 

  52. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) Micrornas expressed by herpes simplex virus 1 during latent infection regulate viral mrnas. Nature 454(7205):780–783

    CAS  PubMed  Google Scholar 

  53. Didiano D, Hobert O (2006) Perfect seed pairing is not a generally reliable predictor for mirna-target interactions. Nat Struct Mol Biol 13(9):849–851. doi:nsmb1138[pii]10.1038/nsmb1138

    Article  CAS  PubMed  Google Scholar 

  54. Didiano D, Hobert O (2008) Molecular architecture of a mirna-regulated 3′ utr. RNA 14(7):1297–1317. doi:rna.1082708[pii]10.1261/rna.1082708

    Article  CAS  PubMed  Google Scholar 

  55. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KG, Rada C, Enright AJ, Toellner KM, Maclennan IC, Turner M (2007) Microrna-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27(6):847–859

    Article  CAS  PubMed  Google Scholar 

  56. Djeraba A, Bernardet N, Dambrine G, Quere P (2000) Nitric oxide inhibits marek’s disease virus replication but is not the single decisive factor in interferon-gamma-mediated viral inhibition. Virology 277(1):58–65

    Article  CAS  PubMed  Google Scholar 

  57. He M, Xu Z, Ding T, Kuang DM, Zheng L (2009) Microrna-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting c/ebpbeta. Cell Mol Immunol 6(5):343–352

    Article  CAS  PubMed  Google Scholar 

  58. Wang X, Zhao Q, Matta R, Meng X, Liu X, Liu CG, Nelin LD, Liu Y (2009) Inducible nitric-oxide synthase expression is regulated by mitogen-activated protein kinase phosphatase-1. J Biol Chem 284(40):27123–27134

    Article  CAS  PubMed  Google Scholar 

  59. Schat KA, Nair V (2008) Marek’s disease. In: SY M (ed) Disease of poultry, chapter 15, Neoplastic Diseases, pp 452–514

  60. Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ (2008) Suppression of immediate-early viral gene expression by herpesvirus-coded micrornas: implications for latency. Proc Natl Acad Sci USA 105(14):5453–5458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sébastien Pfeffer (IBMP, Strasbourg) for his advice concerning northern blots and small RNA cloning experiments and Sylvie Laurent for her advice concerning western blots. We thank Dr. Nair Venugopal (IAH, Compton) for providing the infectious BAC clone p-RB1B. Benoît Muylkens is a postdoctoral research fellow supported by the Fonds National de la Recherche Scientifique (FNRS). This work was supported by the Ligue Nationale contre le cancer, Comité du Cher, AIP P0258 of the Institut National de la Recherche Agronomique and the Agence Nationale de la Recherche (ANR-07-MIME-012-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Rasschaert.

Additional information

B. Muylkens and D. Coupeau contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2010_777_MOESM1_ESM.eps

Fig. S1 (A) Alignment of mdv1-miR-M4-5P and chicken cellular targets. (B) Alignment of gga-miR-155 and chicken cellular targets. (C) Alignment of mdv1-miR-M4-5P, mdv1-miR-M4-3P or gga-miR-155 and viral targets Supplementary material 1 (EPS 308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muylkens, B., Coupeau, D., Dambrine, G. et al. Marek’s disease virus microRNA designated Mdv1-pre-miR-M4 targets both cellular and viral genes. Arch Virol 155, 1823–1837 (2010). https://doi.org/10.1007/s00705-010-0777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0777-y

Keywords

Navigation