Skip to main content

Advertisement

Log in

Effects of cytokines on long control region transcriptional activity in high-risk cutaneous human papillomavirus types 5 and 8

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Cytokines play an important role in the control of mucosal HPV transcription. However, there is little data available on cutaneous HPVs, which are associated with non-melanoma skin cancers. Here, we describe a cell-based assay exploiting HaCaT keratinocytes stably transfected with a reporter construct containing the long control region (LCR) regulatory sequence of gene transcription in HPV-5 and HPV-8. This novel assay has allowed the first systematic analysis of the effects of cytokines on HPV-5 and HPV-8 LCR activity and provides a valuable tool for the search for cutaneous HPV-gene expression inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Akgul B, Garcia-Escudero R, Ghali L, Pfister HJ, Fuchs PG, Navsaria H, Storey A (2005) The E7 protein of cutaneous human papillomavirus type 8 causes invasion of human keratinocytes into the dermis in organotypic cultures of skin. Cancer Res 65:2216–2223

    Article  PubMed  Google Scholar 

  2. Altmann A, Jochmus I, Rosl F (1994) Intra- and extracellular control mechanisms of human papillomavirus infection. Intervirology 37:180–188

    CAS  PubMed  Google Scholar 

  3. Baldwin A, Pirisi L, Creek KE (2004) NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression. J Virol 78:3953–3964

    Article  CAS  PubMed  Google Scholar 

  4. Beetz A, Messer G, Oppel T, van Beuningen D, Peter RU, Kind P (1997) Induction of interleukin 6 by ionizing radiation in a human epithelial cell line: control by corticosteroids. Int J Radiat Biol 72:33–43

    Article  CAS  PubMed  Google Scholar 

  5. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  6. Boxman IL, Mulder LH, Noya F, de Waard V, Gibbs S, Broker TR, ten Kate F, Chow LT, ter Schegget J (2001) Transduction of the E6 and E7 genes of epidermodysplasia-verruciformis associated human papillomaviruses alters human keratinocyte growth and differentiation in organotypic cultures. J Invest Dermatol 117:1397–1404

    Article  CAS  PubMed  Google Scholar 

  7. Dang C, Koehler A, Forschner T, Sehr P, Michael K, Pawlita M, Stockfleth E, Nindl I (2006) E6/E7 expression of human papillomavirus types in cutaneous squamous cell dysplasia and carcinoma in immunosuppressed organ transplant recipients. Br J Dermatol 155:129–136

    Article  CAS  PubMed  Google Scholar 

  8. Dell’Oste V, Azzimonti B, De Andrea M, Mondini M, Zavattaro E, Leigheb G, Weissenborn SJ, Pfister H, Michael KM, Waterboer T, Pawlita M, Amantea A, Landolfo S, Gariglio M (2009) High beta-HPV DNA loads and strong seroreactivity are present in epidermodysplasia verruciformis. J Invest Dermatol 129:1026–1034

    Article  PubMed  Google Scholar 

  9. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  Google Scholar 

  10. Finzer P, Aguilar-Lemarroy A, Rosl F (2002) The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett 15:15–24

    Article  Google Scholar 

  11. Forslund O, Iftner T, Andersson K, Lindelo B, Hradil E, Nordin P, Stenquist B, Kirnbauer R, Dillner J, de Villiers E, For theViraskin Study Group (2007) Cutaneous Human papillomaviruses found in sun-exposed skin: Beta-papillomavirus species 2 predominates in squamous cell carcinoma. J Infect Dis 196:876–883

    Article  CAS  PubMed  Google Scholar 

  12. Gloss B, Yeo-Gloss M, Meisterernst M, Rogge L, Winnackerl EL, Bernard HU (1989) Clusters of nuclear factor I binding sites identify enhancers of several papillomaviruses but alone are not sufficient for enhancer function. Nucleic Acids Res 17:3519–3533

    Article  CAS  PubMed  Google Scholar 

  13. Gupta AK, Cherman AM, Tyring S (2004) Viral and nonviral uses of imiquimod: a review. J Cutan Med Surg 5:338–352

    Article  Google Scholar 

  14. Habig M, Smola H, Dole VS, Derynck R, Pfister H, Smola-Hess S (2006) E7 proteins from high- and low-risk human papillomaviruses bind to TGF-beta-regulated Smad proteins and inhibit their transcriptional activity. Arch Virol 151:1961–1972

    Article  CAS  PubMed  Google Scholar 

  15. Harwood CA, Proby CM (2002) Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis 15:101–114

    PubMed  Google Scholar 

  16. Howley PM, Lowy DR (2001) Papillomaviruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2197–2229

    Google Scholar 

  17. Iftner T, Bierfelder S, Csapo Z, Pfister H (1988) Involvement of human papillomavirus type 8 genes E6 and E7 in transformation and replication. J Virol 62:3655–3661

    CAS  PubMed  Google Scholar 

  18. Jackson S, Harwood CA, Thomas M, Banks L, Storey A (2000) Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 14:3065–3073

    Article  CAS  PubMed  Google Scholar 

  19. Katoh K, Takahashi Y, Hayashi S, Kondoh H (1987) Improved mammalian vectors for high expression of G418 resistance. Cell Struct Funct 12:575–580

    Article  CAS  PubMed  Google Scholar 

  20. Kuhn M, Wolber R, Kolbe L, Schnorr SiesH (2006) Solar-simulated radiation induces secretion of IL-6 and production of isoprostanes in human skin in vivo. Arch Dermatol Res 297:477–479

    Article  CAS  PubMed  Google Scholar 

  21. Kyo S, Inoue M, Hayasaka N, Inoue T, Yutsudo M, Tanizawa O, Hakura A (1994) Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology 200:130–139

    Article  CAS  PubMed  Google Scholar 

  22. Lee DK, Kim BC, Kim I, Cho EA, Satterwhite DJ, Kim SJ (2002) The human papillomavirus E7 oncoprotein inhibits transforming growth factor-beta signaling by blocking binding of the Smad complex to its target sequence. J Biol Chem 277:38557–38564

    Article  CAS  PubMed  Google Scholar 

  23. Lembo D, Donalisio M, De Andrea M, Cornaglia M, Scutera S, Musso T, Landolfo S (2006) A cell-based high-throughput assay for screening inhibitors of human papillomavirus-16 long control region activity. FASEB J 20:148–150

    CAS  PubMed  Google Scholar 

  24. Longworth MS, Laimins LA (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68:362–372

    Article  CAS  PubMed  Google Scholar 

  25. Majewski S, Jablonska S (1995) Epidermodysplasia verruciformis as a model of human papillomavirus-induced genetic cancer of the skin. Arch Dermatol 131:1312–1318

    Article  CAS  PubMed  Google Scholar 

  26. Massimi P, Thomas M, Bouvard V, Ruberto I, Saveria Campo M, Tommasino M, Banks L (2008) Comparative transforming potential of different human papillomaviruses associated with non melanoma skin cancer. Virology 371:374–379

    Article  CAS  PubMed  Google Scholar 

  27. Mendoza J, Jacob Y, Cassonnet P, Favre M (2006) Human Papillomavirus Type 5 E6 oncoprotein represses the transforming growth factor β signaling pathway by binding to SMAD3. J Virol 80:12420–12424

    Article  CAS  PubMed  Google Scholar 

  28. Mistry N, Simonsson M, Evander M (2007) Transcriptional activation of the human papillomavirus type 5 and 16 long control region in cells from cutaneous and mucosal origin. Virol J 4:1–4

    Article  Google Scholar 

  29. Muller K, Meineke V (2007) Radiation-induced alterations in cytokine production by skin cells. Exp Hematol 35:96–104

    Article  PubMed  Google Scholar 

  30. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K (2004) Mechanisms of human papillomavirus induced oncogenesis. J Virol 78:11451–11460

    Article  PubMed  Google Scholar 

  31. Munoz N (2000) Human papillomavirus and cancer: the epidemiological evidence. J Clin Virol 19:1–5

    Article  CAS  PubMed  Google Scholar 

  32. Oster-Schmidt C (2004) Two cases of squamous cell carcinoma treated with topical imiquimod 5%. J Eur Acad Dermatol Venereol 18:93–95

    Article  CAS  PubMed  Google Scholar 

  33. Patel AS, Karagas MR, Perry AE, Nelson HH (2008) Exposure profiles and human papillomavirus infection in skin cancer: an analysis of 25 genus beta-types in a population-based study. J Invest Dermatol 128:2888–2893

    Article  CAS  PubMed  Google Scholar 

  34. Petit-Frère C, Capulas E, Lyon DA, Norbury CJ, Lowe JE, Clingen PH, Riballo E, Green MH, Arlett CF (2000) Apoptosis and cytokine release induced by ionizing or ultraviolet B radiation in primary and immortalized human keratinocytes. Carcinogenesis 21:1087–1095

    Article  PubMed  Google Scholar 

  35. Rösener I, Beermann T, Grußendorf-Conen EI (2002) Therapie eines retroaurikulären Plattenepithelkarzinoms durch Kombination chirurgischer Techniken und topischer Anwendung von Imiquimod. Z Hautkr 77:389–391

    Article  Google Scholar 

  36. Ruhland A, de Villiers EM (2001) Opposite regulation of the HPV 20-URR and HPV27-URR promoters by ultraviolet irradiation and cytokines. Int J Cancer 91:828–834

    Article  CAS  PubMed  Google Scholar 

  37. Sailaja G, Watts RM, Bernard H (1999) Many different papillomaviruses have low transcriptional activity in spite of strong epithelial specific enhancers. J Gen Virol 80:1715–1724

    CAS  PubMed  Google Scholar 

  38. Schaper IK, Marcuzzi GP, Weissenborn SJ, Kasper HU, Dries V, Smyth N, Fuchs P, Pfister H (2005) Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res 65:1394–1400

    Article  CAS  PubMed  Google Scholar 

  39. Sterling JC (2005) Human papillomaviruses and skin cancer. J Clin Virol 32(Suppl 1):S67–S71

    Article  CAS  PubMed  Google Scholar 

  40. Wagstaff AJ, Perry CM (2007) Topical imiquimod: a review of its use in the management of anogenital warts, actinic keratoses, basal cell carcinoma and other skin lesions. Drugs 67:2187–2210

    Article  CAS  PubMed  Google Scholar 

  41. Yamashita T, Segawa K, Fujinaga Y, Nishikawa T, Fujinaga K (1993) Biological and biochemical activity of E7 genes of the cutaneous human papillomavirus type 5 and 8. Oncogene 8:2433–2441

    CAS  PubMed  Google Scholar 

  42. Zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Turin University research funds and by grants from MIUR (PRIN 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lembo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donalisio, M., Poli, A., Civra, A. et al. Effects of cytokines on long control region transcriptional activity in high-risk cutaneous human papillomavirus types 5 and 8. Arch Virol 155, 583–587 (2010). https://doi.org/10.1007/s00705-010-0615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0615-2

Keywords

Navigation