Skip to main content

Advertisement

Log in

Insufficient accumulation of viral late mRNAs restricts the replicative cycle of human adenovirus type 37 in A549 cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Most serotypes of human adenoviruses, except subgroup C viruses such as serotype 2 (Ad2) and Ad5, can grow only to low titers in vitro in human cell lines. To analyze the properties of the replicative cycles of poorly growing Ad serotypes, we compared Ad37 and Ad5 in human A549 cells. In comparison with Ad5, Ad37 showed a slower development of viral-induced cytopathic effects and prolonged cell viability. Furthermore, the maximum yields of progeny viruses were reduced by almost 100-fold. Although the amount of viral DNA and E1A mRNA in infected cells reached comparable levels between these two serotypes, the accumulation of viral late mRNAs and structural proteins in Ad37-infected cells was severely reduced. Overall, our study explains critical steps in the replicative cycle of Ad, which cause serotype-specific restrictions in permissive human cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnberg N, Mei Y, Wadell G (1997) Fiber genes of adenoviruses with tropism for the eye and the genital tract. Virology 227:239–244

    Article  PubMed  CAS  Google Scholar 

  2. Arnberg N, Edlund K, Kidd AH, Wadell G (2000) Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74:42–48

    Article  PubMed  CAS  Google Scholar 

  3. Arnberg N, Kidd AH, Edlund K, Olfat F, Wadell G (2000) Initial interactions of subgenus D adenoviruses with A549 cellular receptors: sialic acid versus alpha(v) integrins. J Virol 74:7691–7693

    Article  PubMed  CAS  Google Scholar 

  4. Arnberg N, Pring-Akerblom P, Wadell G (2002) Adenovirus type 37 uses sialic acid as a cellular receptor on Chang C cells. J Virol 76:8834–8841

    Article  PubMed  CAS  Google Scholar 

  5. Berk JA (2007) Adenoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott, Philadelphia, pp 2355–2394

    Google Scholar 

  6. Cashman SM, Morris DJ, Kumar-Singh R (2004) Adenovirus type 5 pseudotyped with adenovirus type 37 fiber uses sialic acid as a cellular receptor. Virology 324:129–139

    Article  PubMed  CAS  Google Scholar 

  7. Dobner T, Kzhyshkowska J (2001) Nuclear export of adenovirus RNA. Curr Top Microbiol Immunol 259:25–54

    PubMed  CAS  Google Scholar 

  8. Eggerding FA, Pierce WC (1986) Molecular biology of adenovirus type 2 semipermissive infections. I. Viral growth and expression of viral replicative functions during restricted adenovirus infection. Virology 148:97–113

    Article  PubMed  CAS  Google Scholar 

  9. Flint SJ, Gonzalez RA (2003) Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 272:287–330

    PubMed  CAS  Google Scholar 

  10. Ford E, Nelson KE, Warren D (1987) Epidemiology of epidemic keratoconjunctivitis. Epidemiol Rev 9:244–261

    PubMed  CAS  Google Scholar 

  11. Goodrum FD, Ornelles DA (1998) p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 72:9479–9490

    PubMed  CAS  Google Scholar 

  12. Hochstein N, Webb D, Hosel M, Seidel W, Auerochs S, Doerfler W (2008) Human CAR gene expression in nonpermissive hamster cells boosts entry of type 12 adenovirions and nuclear import of viral DNA. J Virol 82:4159–4163

    Article  PubMed  CAS  Google Scholar 

  13. Hosel M, Webb D, Schroer J, Doerfler W (2003) The abortive infection of Syrian hamster cells with human adenovirus type 12. Curr Top Microbiol Immunol 272:415–440

    PubMed  CAS  Google Scholar 

  14. Jones N, Shenk T (1979) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17:683–689

    Article  PubMed  CAS  Google Scholar 

  15. Kafatos FC, Jones CW, Efstratiadis A (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res 7:1541–1552

    Article  PubMed  CAS  Google Scholar 

  16. Kemp MC, Hierholzer JC, Cabradilla CP, Obijeski JF (1983) The changing etiology of epidemic keratoconjunctivitis: antigenic and restriction enzyme analyses of adenovirus types 19 and 37 isolated over a 10-year period. J Infect Dis 148:24–33

    PubMed  CAS  Google Scholar 

  17. Klimkait T, Doerfler W (1985) Adenovirus types 2 and 5 functions elicit replication and late expression of adenovirus type 12 DNA in hamster cells. J Virol 55:466–474

    PubMed  CAS  Google Scholar 

  18. Klimkait T, Doerfler W (1987) E1B functions of type C adenoviruses play a role in the complementation of blocked adenovirus type 12 DNA replication and late gene transcription in hamster cells. Virology 161:109–120

    Article  PubMed  CAS  Google Scholar 

  19. Lucher LA (1995) Abortive adenovirus infection and host range determinants. Curr Top Microbiol Immunol 199:119–152

    PubMed  CAS  Google Scholar 

  20. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  21. Robinson CM, Shariati F, Gillaspy AF, Dyer DW, Chodosh J (2008) Genomic and bioinformatics analysis of human adenovirus type 37: new insights into corneal tropism. BMC Genomics 9:213

    Article  PubMed  Google Scholar 

  22. Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ (1998) The coxsackievirus–adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72:7909–7915

    PubMed  CAS  Google Scholar 

  23. Sawada Y, Raska K Jr, Shenk T (1988) Adenovirus type 5 and adenovirus type 12 recombinant viruses containing heterologous E1 genes are viable, transform rat cells, but are not tumorigenic in rats. Virology 166:281–284

    Article  PubMed  CAS  Google Scholar 

  24. Schiedner G, Schmitz B, Doerfler W (1994) Late transcripts of adenovirus type 12 DNA are not translated in hamster cells expressing the E1 region of adenovirus type 5. J Virol 68:5476–5482

    PubMed  CAS  Google Scholar 

  25. Turnell AS, Grand RJ, Gallimore PH (1999) The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 73:2074–2083

    PubMed  CAS  Google Scholar 

  26. Woo JL, Berk AJ (2007) Adenovirus ubiquitin-protein ligase stimulates viral late mRNA nuclear export. J Virol 81:575–587

    Article  PubMed  CAS  Google Scholar 

  27. Wu E, Trauger SA, Pache L, Mullen TM, von Seggern DJ, Siuzdak G, Nemerow GR (2004) Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J Virol 78:3897–3905

    Article  PubMed  CAS  Google Scholar 

  28. Yu L, Hamada K, Namba M, Kadomatsu K, Muramatsu T, Matsubara S, Tagawa M (2004) Insertion of an exogenous promoter in the E1A regulatory region of adenovirus does not disturb viral replication despite reduced E1A transcription. Cancer Lett 203:51–57

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Y, Bergelson JM (2005) Adenovirus receptors. J Virol 79:12125–12131

    Article  PubMed  CAS  Google Scholar 

  30. Zock C, Doerfler W (1990) A mitigator sequence in the downstream region of the major late promoter of adenovirus type 12 DNA. EMBO J 9:1615–1623

    PubMed  CAS  Google Scholar 

  31. Zock C, Iselt A, Doerfler W (1993) A unique mitigator sequence determines the species specificity of the major late promoter in adenovirus type 12 DNA. J Virol 67:682–693

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. H. Shiiba for technical assistance in the propagation and purification of Ad5 and Ad37 viruses, and Dr. M. Noda (Hiroshima City Institute of Public Health) for providing us with Ad37. This research was supported by a Grant to “Academic Frontier” Project of the Saitama Medical University Research Center for Genomic Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohnosuke Mitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, K., Mitani, K. Insufficient accumulation of viral late mRNAs restricts the replicative cycle of human adenovirus type 37 in A549 cells. Arch Virol 154, 1401–1407 (2009). https://doi.org/10.1007/s00705-009-0451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0451-4

Keywords

Navigation