Abstract
Due to its geographical location, Algeria is characterized by high spatiotemporal rainfall variability. In this study, data from 69 rain gauges located in representative humid, semiarid, and arid Mediterranean basins in northeastern Algeria were analyzed from 1970–2007 on a monthly scale using continuous wavelet analysis and hierarchical cluster analysis with the aim of regionalizing the rainfall patterns. The analysis shows that northern Algeria (Cluster 1), which has a humid climate, is dominated by periodic annual fluctuations in the 8–16-month band. This mode explains most of the total variance, with a contribution between 25 and 60%. In the Cluster 2 and Cluster 3 regions, the climate varies towards aridity (humid to arid from north to south), and the climate is dominated by long-term periodic phenomena characterizing multiannual fluctuations of 64–128 months to decadal periods greater than 128 months, which explains why the total cumulative contribution exceeds 50% of the total variance. In addition, the regional analysis of the isolated spectral bands of the 3–6-month (3 clusters), 8–16-month (3 clusters), and 1–3-year (4 clusters) scale-average variance revealed, globally and for the different regions, a long period of drought that was most pronounced during the 1970s, 1980s, and 1990s, whereas the wet years were marked by fluctuations that exceeded the 95% confidence level during the study period, with a very remarkable tendency towards wet conditions, particularly since the late 1990s. The obtained results can assist decision-makers in better sustainable development practices, especially in the fields of water resources, agriculture, and energy.













Similar content being viewed by others
Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
Code availability
Not applicable.
References
Abadi AM, Rowe CM, Andrade M (2020) Climate regionalization in Bolivia: A combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. Int J Climatol. https://doi.org/10.1002/joc.6464
Abda Z, Chettih M, Zerouali B (2021) Assessment of neuro-fuzzy approach based different wavelet families for daily flow rates forecasting. Model Earth Syst Environ 7:1523–1538. https://doi.org/10.1007/s40808-020-00855-1
Achite M, Buttafuoco G, Toubal KA et al (2017) Precipitation spatial variability and dry areas temporal stability for different elevation classes in the Macta basin (Algeria). Environ Earth Sci 76:458. https://doi.org/10.1007/s12665-017-6794-3
Achour K, Meddi M, Zeroual A et al (2020) Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci 129:42. https://doi.org/10.1007/s12040-019-1306-3
Al-Ani T (2013) Introduction aux ondelettes (wavelets) Concepts généraux de la théorie des ondelettes. Départe©ment Informatique et Télécommunication (IT) ESIEE-Paris. 215 pages
Ali Z, Hussain I, Faisal M, Shoukry AM, Gani S, Ahmad I (2019) A framework to identify homogeneous drought characterization regions. Theor Appl Climatol 137(3–4):3161–3172. https://doi.org/10.1007/s00704-019-02797-w
Anctil F, Pelletier G (2011) Analyse en ondelettes de fluctuations de débit en réseau de distribution d’eau potable. Rev Sci Eau 24(1):25–33. https://doi.org/10.7202/045825ar
Bessaklia H, Serrano-Notivoli R, Ghenim AN, Chikh HA, Megnounif A (2021) Extreme precipitation trends in northeast algeria using a high-resolution gridded daily dataset. Int J Climatol. https://doi.org/10.1002/joc.7213
Bouabdelli S, Meddi M, Zeroual A, Alkama R (2020) Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J Water Clim Change. jwc2020207. https://doi.org/10.2166/wcc.2020.207
Boucherf D (2004) Les changements climatiques en Algérie. ONM, Alger
Brasil Neto RM, Santos CAG, Da Silva RM, Dos Santos CAC, Liu Z, Quinn NW (2021) Geospatial cluster analysis of the state, duration and severity of drought over Paraíba State, northeastern Brazil. Sci Total Envir 799:149492. https://doi.org/10.1016/j.scitotenv.2021.149492
Brito TT, Oliveira-Júnior JF, Lyra GB, Gois G, Zeri M (2017) Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorol Atmospheric Phys 129(5):469–478. https://doi.org/10.1007/s00703-016-0481-x
Caloiero T, Aristodemo F, Ferraro DA (2019) Trend analysis of significant wave height and energy period in southern Italy. Theor Appl Climatol: 1-14. https://doi.org/10.1007/s00704-019-02879-9
Cislaghi A, Masseroni D, Massari C, Camici S, Brocca L (2020) Combining a rainfall–runoff model and a regionalization approach for flood and water resource assessment in the western Po Valley, Italy. Hydrolog Sci J 65(3):348–370. https://doi.org/10.1080/02626667.2019.1690656
Conway D, Persechino A, Ardoin-Bardin S, Hamandawana H, Dieulin C, Mahé G (2009) Rainfall and water resources variability in sub-Saharan Africa during the twentieth century. J Hydrometeorol 10(1):41–59. https://doi.org/10.1175/2008JHM1004.1
Da Silva RM, Celso A, Santos G, Moreira M, Corte-real J, Valeriano C, Medeiros IC (2015) Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat Hazards 77(2):1205–1221. https://doi.org/10.1007/s11069-015-1644-7
Dang C, Zhang H, Singh VP, Yu Y, Shao S (2021) Investigating hydrological variability in the Wuding River Basin: implications for water resources management under the water–human-coupled environment. Water 13(2):184. https://doi.org/10.3390/w13020184
Duncan JM, Biggs EM, Dash J, Atkinson PM (2013) Spatio-temporal trends in precipitation and their implications for water resources management in climate-sensitive Nepal. Appl Geogr 43:138–146. https://doi.org/10.1016/j.apgeog.2013.06.011
Everitt BS, Dunn G (1991) Applied multivariate data analysis. (No. 519.5076 E9)
Fathian F, Dehghan Z (2019) Using hybrid weighting-clustering approach for regional frequency analysis of maximum 24-hr rainfall based on climatic, geographical, and statistical attributes. Int J Climatol 39(11):4413–4428. https://doi.org/10.1002/joc.6082
Fazel N, Berndtsson R, Uvo CB, Madani K, Kløve B (2018) Regionalization of precipitation characteristics in Iran’s Lake Urmia basin. Theor Appl Climatol 132(1–2):363–373. https://doi.org/10.1007/s00704-017-2090-0
Ferreira L, Hitchcock DB (2009) A comparison of hierarchical methods for clustering functional data. Commun Stat - Simul Comput 38(9):1925–1949. https://doi.org/10.1080/03610910903168603
Freire PKM, Santos CAG (2020) Optimal level of wavelet decomposition for daily inflow forecasting. Earth Sci Inform 13:1163–1173. https://doi.org/10.1007/s12145-020-00496-z
Freire PKMM, Santos CAG, Silva GBL (2019) Analysis of the use of discrete wavelet transforms coupled with ANN for short-term streamflow forecasting. Appl Soft Comput 80:494–505. https://doi.org/10.1016/j.asoc.2019.04.024
García-Marín AP, Estévez J, Medina-Cobo MT, Ayuso-Muñoz JL (2015) Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. J Hydrol 529:106–119. https://doi.org/10.1016/j.jhydrol.2015.07.021
Ghorbani MA, Karimi V, Ruskeepää H et al. (2021a) Application of complex networks for monthly rainfall dynamics over central Vietnam. Stoch Environ Res Risk Assess 35: 535–548. https://doi.org/10.1007/s00477-020-01962-2
Ghorbani MA, Kahya E, Roshni, T et al. (2021b) Entropy analysis and pattern recognition in rainfall data, north Algeria. Theor Appl Climatol 144:317–326. https://doi.org/10.1007/s00704-021-03542-y
Gocic M, Trajkovic S (2014) Spatiotemporal characteristics of drought in Serbia. J Hydrol 510:110–123. https://doi.org/10.1016/j.jhydrol.2013.12.030
Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566. https://doi.org/10.5194/npg-11-561-2004
Habibi B, Meddi M (2021) Meteorological drought hazard analysis of wheat production in the semi-arid basin of Cheliff-Zahrez Nord. Algeria Arab J Geosci 14:1045. https://doi.org/10.1007/s12517-021-07401-y
Hakim B, Souheila K, oubelli M‘hamed A, Dalila S, Ahcène S, Karim OA (2021) Improvement of interpolation using information from rainfall stations and comparison of hydroclimate changes. Al-Qadisiyah J Agric Sci, 2618–1479, 11(1):54–67
Hallouz F, Meddi M, Mahé G et al (2020) Analysis of meteorological drought sequences at various timescales in semi-arid climate: case of the Cheliff watershed (northwest of Algeria). Arab J Geosci 13:280. https://doi.org/10.1007/s12517-020-5256-5
Hamlaoui-Moulai L, Mesbah M, Souag-Gamane D et al (2013) Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in Western Algeria. Nat Hazards 65:1293–1311. https://doi.org/10.1007/s11069-012-0411-2
Hasanean HM (2004) Variability of the North Atlantic subtropical high and associations with tropical sea-surface temperature. Int J Climatol 24(8):945–957. https://doi.org/10.1002/joc.1042
Hoffmann L, El Idrissi A, Pfister L, Hingray B, Guex F, Musy A, ... Leviandier T (2004) Development of regionalized hydrological models in an area with short hydrological observation series. River Res Appl 20(3), 243-254. https://doi.org/10.1002/rra.774
Intergovernmental Panel on Climate Change (IPCC) (2014) The fifth assessment report (AR5). http://www.ipcc.ch/ (Feb. 15, 2020)
Jemai H, Ellouze M, Abida H, Laignel B (2018) Spatial and temporal variability of rainfall: case of Bizerte-Ichkeul Basin (Northern Tunisia). Arab J Geosci 11(8):177. https://doi.org/10.1007/s12517-018-3482-x
Khedimallah A, Meddi M, Mahé G (2020) Characterization of the interannual variability of precipitation and runoff in the Cheliff and Medjerda basins (Algeria). J Earth Syst Sci 129:134. https://doi.org/10.1007/s12040-020-01385-1
Khezazna A, Amarchi H, Derdous O, Bousakhria F (2017) Drought monitoring in the Seybouse basin (Algeria) over the last decades. J Water Land Dev 33(1):79–88. https://doi.org/10.1515/jwld-2017-0022
Labat D (2005) Recent advances in wavelet analyses: Part 1. A review of concepts. J Hydrol 314(1–4):275–288. https://doi.org/10.1016/j.jhydrol.2005.04.003
Lazri M, Ameur S (2018) Combination of support vector machine, artificial neural network and random forest for improving the classification of convective and stratiform rain using spectral features of SEVIRI data. Atmos Res 203:118–129. https://doi.org/10.1016/j.atmosres.2017.12.006
Li Q, He P, He Y, Han X, Zeng T, Lu G, Wang H (2020) Investigation to the relation between meteorological drought and hydrological drought in the upper Shaying River Basin using wavelet analysis. Atmos Res 234:104743. https://doi.org/10.1016/j.atmosres.2016.07.030
López-Moreno JI, Vicente-Serrano SM, Morán-Tejeda E et al (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains : observed relationships and projections for the 21st century. Glob Planet Change 77(1):62–76. https://doi.org/10.1016/j.gloplacha.2011.03.003
Lyra GB, Oliveira-Júnior JF, Zeri M (2014) Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. Int J Climatol 34(13):3546–3558. https://doi.org/10.1002/joc.3926
Machiwal D, Kumar S, Meena HM, Santra P, Singh RK, Singh DV (2019) Clustering of rainfall stations and distinguishing influential factors using PCA and HCA techniques over the western dry region of India. Meteorol Appl 26(2):300–311. https://doi.org/10.1002/met.1763
Martinez-Artigas J, Lemus-Canovas M, Lopez-Bustins JA (2020) Precipitation in peninsular Spain: Influence of teleconnection indices and spatial regionalization. Int J Climatol. https://doi.org/10.1002/joc.6770
Massei N, Dieppois B, Hannah DM, Lavers DA, Fossa M, Laignel B, Debret M (2017) Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France. J Hydrol 546:262–275. https://doi.org/10.1016/j.jhydrol.2017.01.008
Massei N, Laignel B, Fritier N (2011) Rapport Seine-Aval 4
Mathbout S, Lopez- Bustins JA, Royé D, Martin-Vide J, Benhamrouche A (2019) Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int J Climatol: 1–21. https://doi.org/10.1002/joc.6278
McCabe MF, Rodell M, Alsdorf DE, Miralles DG, Uijlenhoet R, Wagner W, ... Shi J (2017) The future of Earth observation in hydrology. Hydrol Earth Syst Sci 21(7): 3879. https://doi.org/10.5194/hess-21-3879-2017
Meddi MM, Assani AA, Meddi H (2010) Temporal variability of annual rainfall in the Macta and Tafna catchments, Northwestern Algeria. Water Resour Manage 24(14):3817–3833. https://doi.org/10.1007/s11269-010-9635-7
Meddour R (2010) Bioclimatologie, phytogéographie et phytosociologie en Algérie. Exemple des groupements forestiers et préforestiers de la Kabylie Djurdjurenne. Doctoral dissertation, Université Mouloud Maameri de Tizi Ouzou. 461 p
Mellak S, Souag-Gamane D (2020) Spatio-temporal analysis of maximum drought severity using Copulas in Northern Algeria. J Water Clim Change. jwc2020070. https://doi.org/10.2166/wcc.2020.070
Mengistu D, Bewket W, Dosio A, Panitz HJ (2021) Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J Hydrol 592:125614. https://doi.org/10.1016/j.heliyon.2018.e00771
Merabti A, Martins DS, Meddi M, Pereira LS (2018a) Spatial and time variability of drought based on SPI and RDI with various time scales. Water Resour Manage 32:1087. https://doi.org/10.1007/s11269-017-1856-6
Merabti A, Meddi M, Martins DS et al (2018b) Comparing SPI and RDI applied at local scale as influenced by climate. Water Resour Manage 32:1071–1085. https://doi.org/10.1007/s11269-017-1855-7
Mokdad F, Haddad B (2017) Improved infrared precipitation estimation approaches based on k-means clustering: Application to north Algeria using MSG-SEVIRI satellite data. Adv Space Res 59(12):2880–2900. https://doi.org/10.1016/j.asr.2017.03.027
Mrad D, Dairi S, Boukhari S, Djebbar Y (2019) Applied multivariate analysis on annual rainfall in the northeast of Algeria. J Water Clim Change. https://doi.org/10.2166/wcc.2019.272
Mühlbauer S, Costa AC, Caetano M (2016) A spatiotemporal analysis of droughts and the influence of North Atlantic oscillation in the Iberian Peninsula based on MODIS imagery. Theor Appl Climatol 124(3–4):703–721. https://doi.org/10.1007/s00704-015-1451-9
Munoz-Diaz D, Rodrigo FS (2003) “Effects of the North Atlantic Oscillation on the probability for climatic categories of local monthly rainfall in Southern Spain. Int J Climatol 23:381–397. https://doi.org/10.1002/joc.886
Nakken M (1999) Wavelet analysis of rainfall–runoff variability isolating climatic from anthropogenic patterns. Environ Model Softw 14:283–295. https://doi.org/10.1016/S1364-8152(98)00080-2
Nistor MM, Rai PK, Dugesar V, Mishra VN, Singh P, Arora A, ... Carebia IA (2020) Climate change effect on water resources in Varanasi district, India. Meteorol Appl 27(1): e1863. https://doi.org/10.1002/met.1863
Nouaceur Z, Murărescu O (2016) Rainfall variability and trend analysis of annual rainfall in North Africa. Int J Atmos Sci 2016:7230450. https://doi.org/10.1155/2016/7230450 (12 pages)
Ouachani R, Bargaoui Z, Ouarda T (2013) Power of teleconnection patterns on precipitation and streamflow variability of upper Medjerda Basin. Int J Climatol 33(1):58–76. https://doi.org/10.1002/joc.3407
Pathak P, Kalra A, Ahmad S (2017) Temperature and precipitation changes in the Midwestern United States: implications for water management. Int J Water Resour Dev 33(6):1003–1019. https://doi.org/10.1080/07900627.2016.1238343
Peña-Angulo D, Nadal-Romero E, González-Hidalgo JC, Albaladejo J, Andreu V, Bagarello V, ... Campo J (2019) Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. J Hydrol 571: 390-405. https://doi.org/10.1016/j.jhydrol.2019.01.059
Peña-Angulo D, Vicente-Serrano SM, Domínguez-Castro F, Murphy C, Reig F, Tramblay Y, ... Aznárez-Balta M (2020) Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing. Environ Res Lett. https://doi.org/10.1088/1748-9326/ab9c4f
Philandras CM, Nastos PT, Kapsomenakis J, Douvis KC, Tselioudis G, Zerefos CS (2011) Long-term precipitation trends and variability within the Mediterranean region. Nat Hazards Earth Syst Sci 11(12):3235–3250. https://doi.org/10.5194/nhess-11-3235-2011
Piccarreta M, Pasini A, Capolongo D, Lazzari M (2013) Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: the Basilicata Region, Southern Italy. Int J Climatol 33(15):3229–3248. https://doi.org/10.1002/joc.3670
Pokharel B, Wang SYS, Meyer J, Marahatta S, Nepal B, Chikamoto Y, Gillies R (2020) The east–west division of changing precipitation in Nepal. Int J Climatol 40(7):3348–3359. https://doi.org/10.1002/joc.6401
Rashid MM, Beecham S, Chowdhury RK (2015) Assessment of trends in point rainfall using continuous wavelet transforms. Adv Water Resour 82:1–15. https://doi.org/10.1016/j.advwatres.2015.04.006
Rata M, Douaoui A, Larid M et al (2020) Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theor Appl Climatol 141:1009–1024. https://doi.org/10.1007/s00704-020-03218-z
Rau P, Bourrel L, Labat D, Melo P, Dewitte B, Frappart F, ... Felipe O (2017) Regionalization of rainfall over the Peruvian Pacific slope and coast. Int J Climatol 37(1): 143-158. https://doi.org/10.1002/joc.4693
Rodriguez RD, Singh VP, Pruski FF, Calegario AT (2016) Using entropy theory to improve the definition of homogeneous regions in the semi-arid region of Brazil. Hydrolog Sci J 61(11):2096–2109. https://doi.org/10.1080/02626667.2015.1083651
Roushangar K, Alizadeh F (2019) Using multi-temporal analysis to classify monthly precipitation based on maximal overlap discrete wavelet transform. J Hydroinform 21(4):541–557. https://doi.org/10.2166/hydro.2019.021
Samantaray AK, Mitra A, Ramadas M, Panda RK (2021) Regionalization of hydroclimatic variables using Markov random field model for climate change impact assessment. J Hydrol 596:126071. https://doi.org/10.1016/j.jhydrol.2021.126071
Santos CAG, de Morais BS (2013) Identification of precipitation zones within São Francisco River basin (Brazil) by global wavelet power spectra. Hydrolog Sci J 58(4):789–796. https://doi.org/10.1080/02626667.2013.778412
Santos CAG, Silva GBL (2014) Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrol Sci J 59:312–324. https://doi.org/10.1080/02626667.2013.800944
Santos CAG, Galvão CO, Suzuki K, Trigo RM (2001) matsuyama city rainfall data analysis using wavelet transform. Proc Hydraul Eng Tokyo 45:211–216. https://doi.org/10.2208/prohe.45.211
Santos C, Freire P, Torrence C (2013) A Transformada Wavelet e sua Aplicação na Análise de Séries Hidrológicas. Revista Brasileira de Recursos Hídricos 18(3):271-280. https://doi.org/10.21168/rbrh.v18n3
Santos CAG, Kisi O, da Silva RM, Zounemat-Kermani M (2018) Wavelet-based variability on streamflow at 40-year timescale in the Black Sea region of Turkey. Arab J Geosci 11(8):169. https://doi.org/10.1007/s12517-018-3514-6
Santos CAG, Brasil Neto RM, Silva RM, Costa SGF (2019a) Cluster analysis applied to spatiotemporal variability of monthly precipitation over Paraíba state using Tropical Rainfall Measuring Mission (TRMM) data. Remote Sens 11:637. https://doi.org/10.3390/rs11060637
Santos CAG, Freire PKMM, Silva RM, Akrami SA (2019b) Hybrid wavelet neural network approach for daily inflow forecasting using tropical rainfall measuring mission data. J Hydrol Eng 24:04018062. https://doi.org/10.1061/(asce)he.1943-5584.0001725
Saraiva SV, de Oliveira Carvalho F, Santos CAG, Barreto LC, Freire PKMM (2021) Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Appl Soft Comput 102:107081. https://doi.org/10.1016/j.asoc.2021.107081
Sun Q, Kong D, Miao C, Duan Q, Yang T, Ye A, Gong W (2014) Variations in global temperature and precipitation for the period of 1948 to 2010. Environ Monit Assess 186(9):5663–5679. https://doi.org/10.1007/s10661-014-3811-9
Taibi S, Meddi M, Mahé G, Assani A (2017) Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall. Theor Appl Climatol 127(1–2):241–257. https://doi.org/10.1007/s00704-015-1626-4
Taibi S, Meddi M, Mahé G (2019) Seasonal rainfall variability in the southern Mediterranean border: Observations, regional model simulations and future climate projections. Atmósfera 32(1):39–54. https://doi.org/10.20937/atm.2019.32.01.04
Teodoro PE, de Oliveira-Júnior JF, Da Cunha ER, Correa CCG, Torres FE, Bacani VM, ... Ribeiro LP (2016) Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Mato Grosso do Sul State, Brazil. Meteorol Atmospheric Phys 128(2): 197-209. https://doi.org/10.1007/s00703-015-0408-y
Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79:61–78. https://doi.org/10.1175/1520
Truche C (2010) Caractérisation et quantification des minéraux argileux dans les sols expansifs par spectroscopie infrarouge aux échelles du laboratoire et du terrain. Doctoral dissertation, Université Paul Sabatier-Toulouse III
Ullah H, Akbar M, Khan F (2020) Construction of homogeneous climatic regions by combining cluster analysis and L-moment approach on the basis of Reconnaissance Drought Index for Pakistan. Int J Climatol 40(1):324–341. https://doi.org/10.1002/joc.6214
Vergni L, Di Lena B, Chiaudani A (2016) “Statistical characterisation of winter precipitation in the Abruzzo region (Italy) in relation to the North Atlantic oscillation (NAO). Atmos Res 178:279–290. https://doi.org/10.1016/j.atmosres.2016.03.028
Wang N, Yin J (2019) Self-organizing map network-based precipitation regionalization for the Tibetan Plateau and regional precipitation variability. Theor Appl Climatol 135(1–2):29–44. https://doi.org/10.1007/s00704-017-2349-5
Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244. https://doi.org/10.1080/01621459.1963.10500845
Wilks DS (1995) Statistical methods in the atmospheric sciences. Academic Press, p 467
Wolski P, Conradie S, Jack C, Tadross M (2021) Spatio-temporal patterns of rainfall trends and the 2015–2017 drought over the winter rainfall region of South Africa. Int J Climatol 41:E1303–E1319. https://doi.org/10.1002/joc.6768
Xoplaki E, González-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23(1):63–78. https://doi.org/10.1007/s00382-004-0422-0
Yim O, Ramdeen KT (2015) Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data. Quant Meth Psych 11(1):8–21. https://doi.org/10.20982/tqmp.11.1.p008
Zamrane Z, Turki I, Laignel B, Mahe G, Laftouhi NE (2016) Characterization of the interannual variability of precipitation and streamflow in Tensift and Ksob basins (Morocco) and links with the NAO. Atmosphere 7(6):84. https://doi.org/10.3390/atmos7060084
Zeroual A, Assani AA, Meddi M (2017) Combined analysis of temperature and rainfall variability as they relate to climate indices in northern Algeria over the 1972–2013 period. Hydrol Res 48(2):584–595. https://doi.org/10.2166/nh.2016.244
Zeroual A, Assani AA, Meddi M et al (2019) Assessment of climate change in Algeria from 1951 to 2098 using the Köppen-Geiger climate classification scheme. Clim Dyn 52:227–243. https://doi.org/10.1007/s00382-018-4128-0
Zerouali B, Mesbah M, Chettih M, Djemai M (2018) Contribution of cross time-frequency analysis in assessment of possible relationships between large-scale climatic fluctuations and rainfall of northern central Algeria. Arab J Geosci 11(14):392. https://doi.org/10.1007/s12517-018-3728-7
Zerouali B, Chettih M, Abda Z, Mesbah M, Djemai M (2020) The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria. Acta Geophys 68(5):1443–1460. https://doi.org/10.1007/s11600-020-00466-5
Zerouali B, Chettih M, Abda Z, Mesbah M, Santos CAG, Neto RMB, da Silva RM (2021a) Spatiotemporal meteorological drought assessment in a humid Mediterranean region: case study of the Oued Sebaou basin (northern central Algeria). Nat Hazards 108:689–709. https://doi.org/10.1007/s11069-021-04701-0
Zerouali B, Chettih M, Alwetaishi M, Abda Z, Elbeltagi A, Augusto Guimarães Santos C, Hussein EE (2021b) Evaluation of Karst Spring Discharge Response Using Time-Scale-Based Methods for a Mediterranean Basin of Northern Algeria. Water 13(21):2946. https://doi.org/10.3390/w13212946
Acknowledgements
The authors gratefully thank the Directorate General for Scientific Research and Technological Development of Algeria, the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES) - Finance Code 001, and the Federal University of Paraíba (Public call No. 01/2021 Produtividade em Pesquisa PROPESQ/PRPG/UFPB proposal code: PVF14853-2021) for supporting this research. The authors thank all the engineers of the National Agency of Water Resources (ANRH), who provided us with necessary data. This and all my works are dedicated to the memory of my beloved wonderful mom and darling sister. Will they forever remain in my soul.
Author information
Authors and Affiliations
Contributions
Bilel Zerouali: Formal assessment, conceptualization, writing—original draft preparation, supervision, and validation
Mohamed Chettih: Framework of methodology, resources, writing and searching for bibliography
Zaki Abda: Methodology, processing data and drawing the figures
Mohamed Mesbah: Resources, Data collection and data analysis
Celso Augusto Guimarães Santos: Methodology; writing—review and editing
Reginaldo Moura Brasil Neto: Writing—review and editing
Corresponding author
Ethics declarations
Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals
Not applicable.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zerouali, B., Chettih, M., Abda, Z. et al. A new regionalization of rainfall patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria. Theor Appl Climatol 147, 1489–1510 (2022). https://doi.org/10.1007/s00704-021-03883-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-021-03883-8