Skip to main content
Log in

Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study analyses spatio-temporal trends in precipitation, temperature, and river discharge in the northeast of Iran during recent decades (1953–2013). The Pettitt, SNHT, Buishand, Box-Pierce, Ljung-Box, and McLeod-Li methods were applied to examine homogeneity in time series studied. The nonparametric Mann-Kendall and Sen’s slope estimator tests were used to detect possible significant (p < 0.05) temporal trends in hydrometeorological time series and their magnitude, respectively. For time series with autocorrelation, the trend-free pre-whitening (TFPW) method was used to determine significant trends. To explore spatial distributions of trends, their magnitudes were interpolated by the inverse distance whitening (IDW) method. Trend analysis shows that for daily, monthly, and annual precipitation time series, 12.5, 19, and 12.5 % of the stations revealed significant increasing trends, respectively. For mean temperature, warming trends were found at 38, 23, and 31 % of the stations on daily, monthly, and annual timescales, in turn. Daily and monthly river discharge decreased at 80 and 40 % of the stations. Overall, these results indicate significant increases in precipitation and temperature but decreases in river discharge during recent decades. Hence, it can be concluded that decreasing trends in river discharge time series over the northeast of Iran during 1953–2013 are in response to warming temperatures, which increase the rate of evapotranspiration. Differences between the results of our comprehensive large-scale study and those of previous researches confirm the necessity for more model-based local studies on climatic and environmental changes across the northeast of Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abghari H, Tabari H, Hosseinzadeh Talaee P (2013) River flow trends in the west of Iran during the past 40 years: impact of precipitation variability. Glob Planet Chang 101:52–60. doi:10.1016/j.gloplacha.2012.12.003

    Article  Google Scholar 

  • Abolverdi J, Ferdosifar G, Khalili D, Kamgar-Haghighi AA, Haghighi MA (2014) Recent trends in regional air temperature and precipitation and links to global climate change in the Maharlo watershed. Southwestern Iran Meteorol Atmos Phys 126:177–192. doi:10.1007/s00703-014-0341-5

    Article  Google Scholar 

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675. doi:10.1002/joc.3370060607

    Article  Google Scholar 

  • Berezovskaya S, Yang D, Kane DL (2004) Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys Res Lett 31:L21502. doi:10.1029/2004GL021277

    Article  Google Scholar 

  • Bormann H, Pinter N, Elfert S (2011) Hydrological signatures of flood trends on German rivers: flood frequencies, flood heights and specific stages. J Hydrol 404:50–66. doi:10.1016/j.jhydrol.2011.04.019

    Article  Google Scholar 

  • Box GEP, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J Am Stat Assoc 65:1509–1526. doi:10.2307/2284333

    Article  Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27. doi:10.1016/0022-1694(82)90066-X

    Article  Google Scholar 

  • Buishand TA, De Martino G, Spreeuw JN, Brandsma T (2013) Homogeneity of precipitation series in the Netherlands and their trends in the past century. Int J Climatol 33:815–833. doi:10.1002/joc.3471

    Article  Google Scholar 

  • Cannarozzo M, Noto LV, Viola F (2006) Spatial distribution of rainfall trends in Sicily (1921–2000). Phys Chem Earth 31:1201–1211

    Article  Google Scholar 

  • Capparelli V, Franzke C, Vecchio A, Freeman MP, Watkins NW, Carbone V (2013) A spatiotemporal analysis of U.S. station temperature trends over the last century. Journal of Geophysical Research: Atmospheres 118:7427–7434. doi:10.1002/jgrd.50551

    Google Scholar 

  • Chebana F, Ouarda TBMJ, Duong TC (2013) Testing for multivariate trends in hydrologic frequency analysis. J Hydrol 486:519–530. doi:10.1016/j.jhydrol.2013.01.007

    Article  Google Scholar 

  • Cleveland WS (1994) The elements of graphing data. Hobart Press, Summit, New Jersey

    Google Scholar 

  • Cunderlik JM, Ouarda TBMJ (2009) Trends in the timing and magnitude of floods in Canada. J Hydrol 375:471–480. doi:10.1016/j.jhydrol.2009.06.050

    Article  Google Scholar 

  • Danneberg J (2012) Changes in runoff time series in Thuringia, Germany—Mann-Kendall trend test and extreme value analysis. Adv Geosci 31:49–56. doi:10.5194/adgeo-31-49-2012

    Article  Google Scholar 

  • Delbari M, Afrasiab P, Jahani S (2013) Spatial interpolation of monthly and annual rainfall in northeast of Iran. Meteorog Atmos Phys 122:103–113. doi:10.1007/s00703-013-0273-5

    Article  Google Scholar 

  • Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105. doi:10.1016/S0022-1694(00)00336-X

    Article  Google Scholar 

  • El Kenawy A, López-Moreno JI, Vicente-Serrano SM (2012) Trend and variability of surface air temperature in northeastern Spain (1920–2006): linkage to atmospheric circulation. Atmos Res 106:159–180. doi:10.1016/j.atmosres.2011.12.006

    Article  Google Scholar 

  • El Kenawy A, López-Moreno JI, Stepanek P, Vicente-Serrano SM (2013) An assessment of the role of homogenization protocol in the performance of daily temperature series and trends: application to northeastern Spain. Int J Climatol 33:87–108. doi:10.1002/joc.3410

    Article  Google Scholar 

  • Gebremicael TG, Mohamed YA, Betrie GD, van der Zaag P, Teferi E (2013) Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: a combined analysis of statistical tests, physically-based models and landuse maps. J Hydrol 482:57–68. doi:10.1016/j.jhydrol.2012.12.023

    Article  Google Scholar 

  • Ghasemi AR (2015) Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos Sci Lett 16:366–372. doi:10.1002/asl2.569

    Article  Google Scholar 

  • Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Chang 100:172–182. doi:10.1016/j.gloplacha.2012.10.014

    Article  Google Scholar 

  • Hartmann H, Andresky L (2013) Flooding in the Indus River basin—a spatiotemporal analysis of precipitation records. Glob Planet Chang 107:25–35. doi:10.1016/j.gloplacha.2013.04.002

    Article  Google Scholar 

  • Hasan A, Schorr P (2012) Trend analysis of precipitation and runoff as a basis of design and operation of pumped storage water supply infrastructure in New Jersey. In: World Environmental and Water Resources Congress 2012. pp 1559–1564. doi:10.1061/9780784412312.155

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 28 p.

    Google Scholar 

  • Irannezhad M, Kløve B (2015) Do atmospheric teleconnection patterns explain variations and trends in thermal growing season parameters in Finland? Int J Climatol 35(15):6419–6430

    Article  Google Scholar 

  • Irannezhad M, Marttila H, Kløve B (2014) Longtermvariations and trends in precipitation in Finland. Int J Climatol 34(10):3139–3153

    Article  Google Scholar 

  • Irannezhad M, Torabi Haghighi A, Chen D, Kløve B (2015a) Variability in dryness and wetness in Central Finland and the role of teleconnection patterns. Theor Appl Climatol 122(3):471–486

    Article  Google Scholar 

  • Irannezhad M, Chen D, Kløve B (2015b) Interannual variations and trends in surface air temperature in Finland in relation to atmospheric circulation patterns, 1961–2011. Int J Climatol 35(10):3078–3092

    Article  Google Scholar 

  • Ishak EH, Rahman A, Westra S, Sharma A, Kuczera G (2013) Evaluating the non-stationarity of Australian annual maximum flood. J Hydrol 494:134–145. doi:10.1016/j.jhydrol.2013.04.021

    Article  Google Scholar 

  • Jha MK, Singh AK (2013) Trend analysis of extreme runoff events in major river basins of peninsular Malaysia. International Journal of Water 7:142–158

    Article  Google Scholar 

  • Joseph R, Ting M, Kumar P (2000) Multiple-scale spatio–temporal variability of precipitation over the coterminous United States. J Hydrometeorol 1:373–392. doi:10.1175/1525-7541(2000)001<0373:MSSTVO>2.0.CO;2

    Article  Google Scholar 

  • Kang HM, Yusof F (2012) Homogeneity tests on daily rainfall series in peninsular Malaysia. Int J Contemp Math Sciences 7:14

    Google Scholar 

  • Klein Tank AMG, Können GP, Selten FM (2005) Signals of anthropogenic influence on European warming as seen in the trends patterns of daily temperature variance. Int J Climatol 25:1–16

    Article  Google Scholar 

  • Kliment Z, Matouskava M, Ledvinka O, Kralovec V (2011) Trend analysis of rainfall-runoff regimes in selected headwater areas of the Czech Republic. J Hydrol Hydromech 59:14. doi:10.2478/v10098-011-0003-y

    Article  Google Scholar 

  • Kousari MR, Ahani H, Hendi-zadeh R (2013) Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Glob Planet Chang 111:97–110. doi:10.1016/j.gloplacha.2013.08.011

    Article  Google Scholar 

  • Kriegel D, Mayer C, Hagg W, Vorogushyn S, Duethmann D, Gafurov A, Farinotti D (2013) Changes in glacierisation, climate and runoff in the second half of the twentieth century in the Naryn basin, Central Asia. Glob Planet Chang 110(Part A):51–61. doi:10.1016/j.gloplacha.2013.05.014

    Article  Google Scholar 

  • Kundzewicz ZW, Robson AJ (2004) Change detection in hydrological records—a review of the methodology / Revue méthodologique de la détection de changements dans les chroniques hydrologiques. Hydrol Sci J 49:7–19. doi:10.1623/hysj.49.1.7.53993

    Article  Google Scholar 

  • Li ZJ, Li XB (2008) Trend and causation analysis of runoff variation in the upper reach of Chaobaihe River Basin in northern China during 1961-2005. Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University 30:82–87

    Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303. doi:10.2307/2335207

    Article  Google Scholar 

  • López-Moreno JI et al (2014) Recent glacier retreat and climate trends in cordillera Huaytapallana. Peru Global Planet Change 112:1–11. doi:10.1016/j.gloplacha.2013.10.010

    Article  Google Scholar 

  • McLeod AI, Li WK (1983) Diagnostic checking Arma time series models using squared-residual autocorrelations. J Time Ser Anal 4:269–273. doi:10.1111/j.1467-9892.1983.tb00373.x

    Article  Google Scholar 

  • McVicar TR, Van Niel TG, Li LT, Hutchinson MF, Mu XM, Liu ZH (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J Hydrol 338:196–220

    Article  Google Scholar 

  • Minaei M, Kainz W (2016) Watershed Land Cover/Land Use Mapping Using Remote Sensing and Data Mining in Gorganrood, Iran ISPRS International Journal of Geo-Information 5:57. Doi:10.3390/ijgi5050057

  • Nie C et al (2012) Spatial and temporal changes in extreme temperature and extreme precipitation in Guangxi. Quat Int 263:162–171. doi:10.1016/j.quaint.2012.02.029

    Article  Google Scholar 

  • Obot NI, Chendo MAC, Udo SO, Ewona IO (2010) Evaluation of rainfall trends in Nigeria for 30 years (1978-2007). Int J Phys Sci 5:2217–2222

    Google Scholar 

  • Petrow T, Merz B (2009) Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J Hydrol 371:129–141. doi:10.1016/j.jhydrol.2009.03.024

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl statist 28:10

    Article  Google Scholar 

  • Rana A, Moradkhani H (2016) Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios. Clim Dyn 47(1):579–600

    Article  Google Scholar 

  • Renard B et al (2008) Regional methods for trend detection: assessing field significance and regional consistency. Water Resour Res 44:W08419. doi:10.1029/2007WR006268

    Google Scholar 

  • Saboohi R, Soltani S, Khodagholi M (2012) Trend analysis of temperature parameters in Iran. Theor Appl Climatol 109:529–547. doi:10.1007/s00704-012-0590-5

    Article  Google Scholar 

  • Safeeq M, Mair A, Fares A (2013) Temporal and spatial trends in air temperature on the Island of Oahu, Hawaii. Int J Climatol 33:2816–2835. doi:10.1002/Joc.3629

    Article  Google Scholar 

  • Santos M, Fragoso M (2013) Precipitation variability in Northern Portugal: data homogeneity assessment and trends in extreme precipitation indices. Atmos Res 131:34–45. doi:10.1016/j.atmosres.2013.04.008

    Article  Google Scholar 

  • Shifteh Some’e B, Ezani A, Tabari H (2012) Spatiotemporal trends and change point of precipitation in Iran. Atmos Res 113:1–12. doi:10.1016/j.atmosres.2012.04.016

    Article  Google Scholar 

  • Soltani S, Saboohi R, Yaghmaei L (2012) Rainfall and rainy days trend in Iran. Clim Chang 110:187–213. doi:10.1007/s10584-011-0146-1

    Article  Google Scholar 

  • Soltani M et al. (2015) Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor Appl Climatol 1–21. doi:10.1007/s00704-015-1609-5

  • Statistical-Center-of-Iran (2006) Iranian population and housing census 1385 - Golestan Province General Results 57

  • Tabari H, Hosseinzadeh Talaee P (2011a) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396:313–320. doi:10.1016/j.jhydrol.2010.11.034

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2011b) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorog Atmos Phys 111:121–131. doi:10.1007/s00703-011-0125-0

    Article  Google Scholar 

  • Tabari H, Somee BS, Zadeh MR (2011) Testing for long-term trends in climatic variables in Iran. Atmos Res 100:132–140. doi:10.1016/j.atmosres.2011.01.005

    Article  Google Scholar 

  • Tabari H, Abghari H, Hosseinzadeh Talaee P (2012a) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process 26:3351–3361. doi:10.1002/hyp.8460

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P, Ezani A, Shifteh Some’e B (2012b) Shift changes and monotonic trends in autocorrelated temperature series over Iran. Theor Appl Climatol 109:95–108. doi:10.1007/s00704-011-0568-8

    Article  Google Scholar 

  • Tian Y, Ma L, Lei X, Jiang Y (2010) Analysis of runoff change trend using hydrological time series method. In: Geoscience and remote sensing (IITA-GRS), 2010 Second IITA International Conference on, 28–31 Aug. 2010. pp 263–267. doi:10.1109/IITA-GRS.2010.5604096

  • Velpuri NM, Senay GB (2013) Analysis of long-term trends (1950–2009) in precipitation, runoff and runoff coefficient in major urban watersheds in the United States. Environ Res Lett 8:024020

    Article  Google Scholar 

  • Wang R, Li C (2015) Spatiotemporal analysis of precipitation trends during 1961–2010 in Hubei province, central China. Theor Appl Climatol 1–15. doi:10.1007/s00704-015-1426-x

  • Wang H, Zhang M, Li P, Dang X, Zhu H, Chang L (2011) Long-term trend analysis for the runoff series in Yulin. In: Water Resource and Environmental Protection (ISWREP), 2011 International Symposium on, 20–22 May 2011. pp 1062–1065. doi:10.1109/ISWREP.2011.5893197

  • Wang Y, Ren F, Zhang X (2013) Spatial and temporal variations of regional high temperature events in China. Int J Climatol. doi:10.1002/joc.3893

    Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of twentieth century European daily temperature and precipitation series. Int J Climatol 23:679–692. doi:10.1002/joc.906

    Article  Google Scholar 

  • Xu K, Milliman JD, Xu H (2010) Temporal trend of precipitation and runoff in major Chinese rivers since 1951. Glob Planet Chang 73:219–232. doi:10.1016/j.gloplacha.2010.07.002

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829. doi:10.1002/hyp.1095

    Article  Google Scholar 

  • Zhang Q, Li J, Singh VP, Xu C-Y (2013a) Copula-based spatio-temporal patterns of precipitation extremes in China. Int J Climatol 33:1140–1152. doi:10.1002/joc.3499

    Article  Google Scholar 

  • Zhang Q, Li J, Singh VP, Xiao M (2013b) Spatio-temporal relations between temperature and precipitation regimes: implications for temperature-induced changes in the hydrological cycle. Glob Planet Chang 111:57–76. doi:10.1016/j.gloplacha.2013.08.012

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Golestan Jihad-e-Agriculture organization, Dr. S.R. Hosseinzadeh (Ferdowsi University of Mashhad) and Dr. Naser Bay (Golestan Red Crescent Society). We are also grateful to Dr. Mahmud Davudi, Dr. Sajad begheri, Mr. Jabbar Mala Arazi, Ms. Mahboubeh Shahabi, and Ms. Mahdieh Marashi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Minaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minaei, M., Irannezhad, M. Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades. Theor Appl Climatol 131, 167–179 (2018). https://doi.org/10.1007/s00704-016-1963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1963-y

Profiles

  1. Masoud Minaei