Skip to main content

Advertisement

Log in

How recent climate change influences water use efficiency in East Asia

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Water use efficiency (WUE), defined as the ratio of gross primary productivity to evapotranspiration, is an important indicator of the trade-off between water loss and carbon gain. We used a biophysical process-based model to examine the relative importance of climate-induced changes in meteorological factors and leaf area index (LAI) on the changes in WUE in East Asia. Validation showed that our simulation could capture the magnitudes and variations of WUE at 18 flux sites in Asia. Regional results indicated that the highest WUE occurred in boreal forests at high latitudes and the lowest WUE in desert areas of China. Changes in meteorological factors negatively affected WUE in the northwestern, northern, and eastern study regions. Changes in LAI had determinant impacts on changes in WUE in most areas except for those with sparse or low-density vegetation (e.g., western interior China, southeast island countries) where meteorological factors dominated. We conclude that, aside from the impact of meteorological factors on WUE, climate-induced changes in LAI may play a prominent role in regulating WUE changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amthor JS, Chen JM, Clein JS et al (2001) Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements. J Geophys Res 106. doi:10.1029/2000JD900850

  • Baldocchi DD, Xu L, Kiang N (1994) How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric For Meteorol 123:13–39

    Article  Google Scholar 

  • Beer C, Ciais P, Reichstein M et al (2009) Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochem Cycles 23, GB2018. doi:10.1029/2008GB003233

    Article  Google Scholar 

  • Bonan G (1993) Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens Environ 43: 303–314

    Google Scholar 

  • Brown ME, Pinzon JE, Morisette JT et al (2006) Evaluation of the consistency of long term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWIFS, MODIS, and Landsat ETM+. IEEE Trans Geosci Remote Sens 44(7):1787–1793

    Article  Google Scholar 

  • Chen JM, Liu J, Cihlar J, Goulden ML (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Model 124:99–119

    Article  Google Scholar 

  • Chen JM, Chen X, Ju W, Geng X (2005) A remote sensing-driven distributed hydrological model: mapping evapotranspiration in a forested watershed. J Hydrol 305:15–39

    Article  Google Scholar 

  • Chen JM, Deng F, Chen M (2006) Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Trans Geosci Remote Sens 44(8):2230–2237

    Article  Google Scholar 

  • Chen JM, Mo G, Pisek J, Liu J et al (2012) Effect of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob Biogeochem Cycles 26(1): doi:10.1029/2010GB003996

  • Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149:78–90

    Article  Google Scholar 

  • Feng X, Liu G, Chen JM, Chen M et al (2007) Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J Environ Manage 85(3):563–573

    Article  Google Scholar 

  • Fu C (2003) Potential impacts of human-induced land cover change on East Asia monsoon. Glob Planet Chang 37:219–229

    Google Scholar 

  • Fu C, Wen G (1999) Variation of ecosystems over East Asia in association with seasonal, interannual and decadal monsoon climate variability. Clim Chang 43:477–494

    Article  Google Scholar 

  • Hansen M, DeFries R, Townshend JRG, Sohlberg R (1998) UMD Global Land Cover Classification, 1 Kilometer, 1.0. Department of Geography, University of Maryland, College Park, pp 1981–1994

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hirano T, Segah H, Harada T et al (2007) Carbon dioxide balance of a tropical peat swamp forest in Kalimantan. Indones Global Chang Biol 13:412–425

    Article  Google Scholar 

  • Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agric For Meteorol 148:738–747

    Article  Google Scholar 

  • Jassal RS, Black TA, Spittlehouse DL et al (2009) Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. Agric For Meteorol 149:1168–1178

    Article  Google Scholar 

  • Ju W, Gao P, Wang J et al (2010) Combining an ecological model with remote sensing and GIS techniques to monitor soil water content of croplands with a monsoon climate. Agric Water Manag 97(8):1221–1231

    Article  Google Scholar 

  • Kwon H, Kim J, Hong J (2010) Influence of the Asian Monsoon on net ecosystem carbon exchange in two major plant functional types in Korea. Biogeosciences 7:1493–1504

    Article  Google Scholar 

  • Kuglitsch FG, Reichstein M, Beer C et al (2008) Characterisation of ecosystem water-use efficiency of European forests from eddy covariance measurements. Biogeosci Discuss 5:4481–4519

    Article  Google Scholar 

  • Law BE, Falge E, Gu L et al (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120

    Article  Google Scholar 

  • Li SG, Asanuma J, Kotani A et al (2005a) Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia. J Geogr Res 110, D09303. doi:10.1029/2004JD005453

    Google Scholar 

  • Li SG, Asanuma J, Eugster W et al (2005b) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Glob Chang Biol 11: doi:10.1111/j.1365-2486.2005.01047.x

  • Liu J, Chen JM, Cihlar J, Park W (1997) A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens Environ 62:158–175

    Article  Google Scholar 

  • Liu J, Chen JM, Cihlar J (2003) Mapping evapotranpiration based on remote sensing: an application to Canada’s landmass. Water Resour Res 39(7):1189–1200

    Google Scholar 

  • Lu X, Zhuang Q (2010) Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens Environ 114(9):1924–1939

    Article  Google Scholar 

  • Luo T (1996) Patterns of biological production and its mathematical models for main forest types of China. Graduate School, Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Matsushita B, Tamura M (2002) Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sens Environ 81:58–66

    Article  Google Scholar 

  • Myneni RB, Hoffman S, Knyazikhin Y et al (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231

    Article  Google Scholar 

  • Ponton S, Flanagan LB, Alstad KP et al (2006) Comparison of ecosystem water-use efficiency among douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glob Chang Biol 2(12):294–310

    Article  Google Scholar 

  • Pettorelli N, Vik J, Mysterud A et al (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510

    Article  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications: 1 Hydrological balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S et al (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol 134:4–16

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Hirata R et al (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric Forest Meteorol. doi:10.1016/j.agrformet.2007.12.006

    Google Scholar 

  • Salve R, Sudderth EA, Clair SBS et al (2011) Effect of grassland vegetation type on the responses of hydrological processes to seasonal precipitation patterns. J Hydrol 410:51–61

    Article  Google Scholar 

  • Sonnentag O, Chen JM, Roulet NT et al (2008) Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: the influence of topography. J Geophys Res-Biogeosci 113, G02005. doi:10.1029/2007JG000605

    Article  Google Scholar 

  • Takagi K, Fukuzawa K, Liang N et al (2009) Change in the CO2 balance under a series of forestry activities in a cool-temperate mixed forest with dense under growth. Glob Chang Biol 15:1275–1288

    Article  Google Scholar 

  • Tian H, Chen G, Liu M et al (2010) Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. Forest Ecol Manage 259:1311–1327

    Article  Google Scholar 

  • Tong X, Li J, Yu Q, Qin Z (2009) Ecosystem water use efficiency in an irrigated cropland in the North China Plain. J Hydrol 374:329–337

    Article  Google Scholar 

  • Williams CA, Collatz GJ, Masek J et al (2012) Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochem Cycles 26, GB1005. doi:10.1029/2010GB003947

  • Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, New York

    Google Scholar 

  • Yu G, Fu Y, Sun X et al (2006) Recent progress and future directions of ChinaFLUX. Sci China Ser D Earth Sci 49(Supp II):1–23

    Google Scholar 

  • Yu G, Song X, Wang Q et al (2008) Water use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytol 177:927–937

    Article  Google Scholar 

  • Yuan W, Liu S, Liu H et al (2010) Impacts of precipitation seasonality and ecosystem types on evaportranspiration in the Yukon River Basin Alaska. Water Resour Res 46, W02514. doi:10.1029/2009WR008119

    Google Scholar 

  • Zhang F, Ju W, Chen JM et al (2010) Simulations of evapotranspiration in Southeast Asia using BEPS. J Nat Resour 25:1598–1605 (in Chinese)

    Google Scholar 

  • Zhang F, Ju W, Shen S, et al (2012) Variations of terrestrial net primary productivity in East Asia. Terr Atmos Ocean Sci 23(4). doi:10.3319/TAO.2012.03.28.01(A)

  • Zhao M, Running SW, Nemani RR (2006) Sensitivity of moderate resolution imaging spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J Geophys Res 111, G01002. doi:10.1029/2004JG000004

    Google Scholar 

  • Zhu Q, Jiang H, Peng C et al (2010) Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China. Ecol Model 222(14):2414–2429

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the National Basic Research Program of China (2010CB833503), National Natural Science Foundation of China (40871240/D011004), Jiangsu Key Laboratory Program of Aro-meteorology of NUIST (KYQ1202), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PARO). We thank Prof. Jing M. Chen and Nadine Nesbittat University of Toronto, Alexa Dugan in US Forest Service to provide suggestions and do revisions. We also thank Prof. J. Asanuma at University of Tsukuba and Yingnian Li at Chinese Academy Sciences to provide AsiaFlux and ChinaFlux data. Thanks are also extended to Dr. Hartmut Graßl, and anonymous reviewers for providing constructive comments during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Ju, W., Shen, S. et al. How recent climate change influences water use efficiency in East Asia. Theor Appl Climatol 116, 359–370 (2014). https://doi.org/10.1007/s00704-013-0949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0949-2

Keywords

Navigation