Skip to main content

Advertisement

Log in

Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM

Effects on extreme values and climate change signal

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A new parametric bias correction method for precipitation with an extension for extreme values is compared to an empirical and an existing parametric method. The bias corrections are applied to the regional climate model COSMO-CLM (consortium for small-scale modelling – climate limited area modelling) with a resolution of 4.5 km for the time periods 1991–2000 and 2091–2100. In addition to a comparison in a cross-validation framework, a focus is laid on the investigation of extreme value correction and the effect of the bias correction on the climate change signal. According to the statistical methods used in this study, it was found that the empirical method outperforms both parametric alternatives. However, due to the limited length of the available time series, some outliers occurred, and all methods had problems correcting extreme values. The climate change signal is moderately influenced by all three methods, and the power of climate change detection is reduced. The largest effect was found for the number of dry days and the mean daily intensity, which are considerably altered after correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Global Change project: http://www.uni-trier.de/index.php?id=40193&L=2

References

  • Anagnostopoulou C, Tolika K (2012) Extreme precipitation in Europe: statistical threshold selection based on climatological criteria. Theor Appl Climatol 107:479–489. doi:10.1007/s00704-011-0487-8

    Article  Google Scholar 

  • Bachner S, Kapala A, Simmer C (2008) Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations. Meteorol Z 17(4):407–419

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, Ser B (Methodol) 57:280–300

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27:1643–1655. doi:10.1002/joc.1602

    Article  Google Scholar 

  • Casper MC, Grigoryan G, Gronz O, Gutjahr O, Heinemann G, Ley R, Rock A (2012) Analysis of projected hydrological behavior of catchments based on signature indices. Hydrol Earth Syst Sci 16:409–421. doi:10.5194/hess-16-409-2012

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Inc., Hillsdale, p 590

    Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, Berlin, p 224

    Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Global Planet Change 57:16–26. doi:10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  • Fowler HJ, Ekström M (2009) Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int J Climatol 29:385–416. doi:10.1002/joc.1827

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4142. doi:10.1029/2002JD002287

    Article  Google Scholar 

  • Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note: downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol Earth Syst Sci 16:3383–3390

    Article  Google Scholar 

  • Graham LP, Hagemann S, Jaun S, Beniston M (2007) On interpreting hydrological change from regional climate models. Clim Change 81:97–122. doi:10.1007/s10584-006-9217-0

    Article  Google Scholar 

  • Haddeland I, Heinke J, Voß F, Eisner S, Chen C, Hagemann S, Ludwig F (2012) Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrol Earth Syst Sci 16:305–318. doi:10.5194/hessd-8-7919-2011

    Article  Google Scholar 

  • Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J Hydrometeorol 12:556–578. doi:10.1175/2011JHM1336.1

    Article  Google Scholar 

  • Hagemann S, Machenhauer B, Jones R, Christensen OB, Déqué M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23:547–567. doi:10.1007/s00382-004-0444-7

    Article  Google Scholar 

  • Hansen JW, Challinor A, Ines A, Wheeler T, Moron V (2006) Translating climate forecasts into agricultural terms: advances and challenges. Clim Res 33:27–41. doi:10.3354/cr033027

    Article  Google Scholar 

  • Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mounfainous basins in the United States. J Am Water Resour Assoc 36:387–397. doi:10.1111/j.1752-1688.2000.tb04276.x

    Article  Google Scholar 

  • Hohenegger C, Brockhaus P, Schär C (2008) Towards climate simulations at cloud-resolving scales. Meteorol Z 17:383–394. doi:10.1127/0941-2948/2008/0303

    Article  Google Scholar 

  • Hollweg HD, Böhm U, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Max-Planck-Institut für Meteorologie Group: Modelle & Daten, Tech Report

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302. doi:10.1007/BF00139728

    Article  Google Scholar 

  • Knote C, Heinemann G, Rockel B (2010) Changes in weather extremes: assessment of return values using high resolution climate simulations at convection-resolving scale. Meteorol Z 19:11–23. doi:10.1127/0941-2948/2010/0424

    Article  Google Scholar 

  • Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59. doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(RG3003):1–34. doi:10.1029/2009RG000314

    Google Scholar 

  • Michelangeli P-A, Vrac M, Loukos H (2009) Probabilistic downscaling approaches: application to wind cumulative distribution function. Geophys Res Lett 36:L11708. doi:10.1029/2009GL038401

    Article  Google Scholar 

  • Panofsky HW, Brier GW (1968) Some applications of statistics to meteorology. Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences, Pennsylvania, p 224

  • Piani C, Haerter JO, Coppola E (2010a) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192. doi:10.1007/s00704-009-0134-9

    Article  Google Scholar 

  • Piani C, Weedon GP, Best M, Gomes SM, Viterbo P, Hagemann S, Haerter JO (2010b) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215. doi:10.1016/j.jhydrol.2010.10.024

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Sennikovs J, Bethers U (2009) Statistical downscaling method of regional climate model results for hydrological modelling. In: 18th world IMACS/MODSIM congress

  • Sharma D, Gupta D, Babel MS (2007) Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrol Earth Syst Sci 11:1373–1390. doi:10.5194/hess-11-1373-2007

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96

    Article  Google Scholar 

  • Themeßl MJ, Gobiet A, Heinrich G (2012) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544. doi:10.1007/s10584-011-0224-4

    Article  Google Scholar 

  • Themeßl MJ, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Change 112:449–468. doi:10.1002/joc.2168

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

    Google Scholar 

  • van Roosmalen L, Sonnenborg TO, Jensen KH, Christense JH (2011) Comparison of hydrological simulations of climate change using perturbation of observations and distribution-based scaling. Vadose Zone J 10:136–150. doi:10.2136/vzj2010.0112

    Article  Google Scholar 

  • Ventura V, Paciorek C, Risbey JS (2004) Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J Climate 17:4343–4356. doi:10.1175/3199.1

    Article  Google Scholar 

  • Vlc̆ek O, Radan H (2009) Is daily precipitation gamma-distributed?: adverse effects of an incorrect use of the Kolmogorov–Smirnov test. Atmos Res 93:759–766. doi:16/j.atmosres.2009.03.005

    Article  Google Scholar 

  • Wehner M (2010) Sources of uncertainty in the extreme value statistics of climate data. Extremes 13:205–217. doi:10.1007/s10687-010-0105-7

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic, Burlington, p 704. ISBN: 0123850223

    Google Scholar 

  • Wilks DS (2006) On field significance and the false discovery rate. J Appl Meteorol Climatol 45:1181–1189. doi:10.1175/JAM2404.1

    Article  Google Scholar 

  • Wood A, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate outputs. Clim Change 62:189–216. doi:10.1023/B:CLIM.000001368599609.9e

    Article  Google Scholar 

  • Yang W, Andréasson J, Graham LP, Olsson J, Rosberg J, Wetterhall F (2010) Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrol Res 41:211–229. doi:10.2166/nh.2010.004

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the State of Rhineland-Palatinate (Research Initiative Rhineland-Palatinate) and carried out within the “Global Change” project. The authors wish to thank the State Office for Environment, Water Management and Trade Control (LUWG) Rhineland-Palatinate at Mainz for providing the data of precipitation, the German Weather Service (DWD) for the REGNIE data set and the DKRZ for providing computing time. We also thank Burkhardt Rockel (HZG Geesthacht), Andreas Will (BTU Cottbus) and Hans-Jürgen Panitz (KIT Karlsruhe) for helping with the CCLM configuration, and we thank the CCLM Community. Additionally, we thank Lukas Schefczyk (University of Trier) for performing parts of the model runs and Philipp Reiter (RLP Kompetenzzentrum fr Klimawandelfolgen) for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Gutjahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutjahr, O., Heinemann, G. Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM. Theor Appl Climatol 114, 511–529 (2013). https://doi.org/10.1007/s00704-013-0834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0834-z

Keywords

Navigation