Skip to main content

Advertisement

Log in

The development of pain circuits and unique effects of neonatal injury

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Pain is a necessary sensation that prevents further tissue damage, but can be debilitating and detrimental in daily life under chronic conditions. Neuronal activity strongly regulates the maturation of the somatosensory system, and aberrant sensory input caused by injury or inflammation during critical periods of early postnatal development can have prolonged, detrimental effects on pain processing. This review will outline the maturation of neuronal circuits responsible for the transmission of nociceptive signals and the generation of pain sensation—involving peripheral sensory neurons, the spinal cord dorsal horn, and brain—in addition to the influences of the neuroimmune system on somatosensation. This summary will also highlight the unique effects of neonatal tissue injury on the maturation of these systems and subsequent consequences for adult somatosensation. Ultimately, this review emphasizes the need to account for age as an independent variable in basic and clinical pain research, and importantly, to consider the distinct qualities of the pediatric population when designing novel strategies for pain management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraira VE, Ginty DD (2013) The sensory neurons of touch Neuron 79:618–639

    CAS  PubMed  Google Scholar 

  • Andrews K, Fitzgerald M (1994) The cutaneous withdrawal reflex in human neonates: sensitization, receptive fields, and the effects of contralateral stimulation. Pain 56:95–101

    CAS  PubMed  Google Scholar 

  • Antal M, Petko M, Polgar E, Heizmann C, Storm-Mathisen J (1996) Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 73:509–518

    CAS  PubMed  Google Scholar 

  • Baccei ML, Fitzgerald M (2004) Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn. J Neurosci 24:4749–4757. https://doi.org/10.1523/JNEUROSCI.5211-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baccei ML, Bardoni R, Fitzgerald M (2003) Development of nociceptive synaptic inputs to the neonatal rat dorsal horn: glutamate release by capsaicin and menthol. J Physiol 549:231–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Li JJ, Perl ER (1998) Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci 18:8740–8750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barr JS, Katz KA, Hazen A (2011) Surgical management of facial nerve paralysis in the pediatric population. J Pediatr Surg 46:2168–2176. https://doi.org/10.1016/j.jpedsurg.2011.06.036

    Article  PubMed  Google Scholar 

  • Bartocci M, Bergqvist LL, Lagercrantz H, Anand KJ (2006) Pain activates cortical areas in the preterm newborn brain. Pain 122:109–117. https://doi.org/10.1016/j.pain.2006.01.015

    Article  PubMed  Google Scholar 

  • Beggs S, Torsney C, Drew LJ, Fitzgerald M (2002) The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process. Eur J Neurosci 16:1249–1258

    PubMed  Google Scholar 

  • Beggs S, Alvares D, Moss A, Currie G, Middleton J, Salter MW, Fitzgerald M (2012a) A role for NT-3 in the hyperinnervation of neonatally wounded skin. PAIN® 153:2133–2139

    CAS  Google Scholar 

  • Beggs S, Currie G, Salter MW, Fitzgerald M, Walker SM (2012b) Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain 135:404–417. https://doi.org/10.1093/brain/awr288

    Article  PubMed  Google Scholar 

  • Benn SC, Costigan M, Tate S, Fitzgerald M, Woolf CJ (2001) Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1. 8 (SNS) and Nav1. 9 (SNS2) in primary sensory neurons. J Neurosci 21:6077–6085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182

    CAS  PubMed  Google Scholar 

  • Bourane S et al (2015) Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science 350:550–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bremner LR, Fitzgerald M (2008) Postnatal tuning of cutaneous inhibitory receptive fields in the rat. J Physiol 586:1529–1537

    CAS  PubMed  Google Scholar 

  • Bremner L, Fitzgerald M, Baccei M (2006) Functional GABAA-receptor-mediated inhibition in the neonatal dorsal horn. J Neurophysiol 95:3893–3897

    CAS  PubMed  Google Scholar 

  • Brewer CL, Baccei ML (2018) Enhanced postsynaptic GABAB receptor signaling in adult spinal projection neurons after neonatal injury. Neuroscience 384:329–339. https://doi.org/10.1016/j.neuroscience.2018.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P, Fabrizi L, Olhede S, Fitzgerald M (2016) The development of nociceptive network activity in the somatosensory cortex of freely moving rat pups. Cerebral Cortex 26(12):1–11

    Google Scholar 

  • Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR (2018) Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100:1292–1311. https://doi.org/10.1016/j.neuron.2018.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier M, Toporikova N, Simmers J, Thoby-Brisson M (2016) Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network. eLife 5:e16125

    PubMed  PubMed Central  Google Scholar 

  • Clancy B, Darlington R, Finlay B (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17

    CAS  PubMed  Google Scholar 

  • Coetzee WA et al (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–255

    CAS  PubMed  Google Scholar 

  • Corder G et al (2013) Constitutive μ-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 341:1394–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelissen L et al (2013) Postnatal temporal, spatial and modality tuning of nociceptive cutaneous flexion reflexes in human infants. PloS One 8:e76470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha J, Cunha F, Poole S, Ferreira S (2000) Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. Br J Pharmacol 130:1418–1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Lima J, Alvares D, Hatch DJ, Fitzgerald M (1999) Sensory hyperinnervation after neonatal skin wounding: effect of bupivacaine sciatic nerve block. Br J Anaesth 83:662–664

    PubMed  Google Scholar 

  • Dickenson AH, Sullivan AF (1987) Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology 26:1235–1238

    CAS  PubMed  Google Scholar 

  • Duan B et al (2014) Identification of spinal circuits transmitting and gating mechanical pain. Cell 159:1417–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrizi L, Slater R, Worley A, Meek J, Boyd S, Olhede S, Fitzgerald M (2011) A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Curr Biol 21:1552–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fields H (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5:565

    CAS  PubMed  Google Scholar 

  • Fitzgerald M (1985) The post-natal development of cutaneous afferent fibre input and receptive field organization in the rat dorsal horn. J Physiol 364:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald M (2005) The development of nociceptive circuits. Nat Rev Neurosci 6:507–520. https://doi.org/10.1038/nrn1701

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M, Gibson S (1984) The postnatal physiological and neurochemical development of peripheral sensory C fibres. Neuroscience 13:933–944

    CAS  PubMed  Google Scholar 

  • Fitzgerald M, Butcher T, Shortland P (1994) Developmental changes in the laminar termination of A fibre cutaneous sensory afferents in the rat spinal cord dorsal horn. J Comp Neurol 348:225–233

    CAS  PubMed  Google Scholar 

  • Gaskin DJ, Richard P (2012) The economic costs of pain in the United States. J Pain 13:715–724

    PubMed  Google Scholar 

  • Gentile LF et al (2014) Protective immunity and defects in the neonatal and elderly immune response to sepsis. J Immunol 192:3156–3165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goksan S et al (2015) fMRI reveals neural activity overlap between adult and infant pain. Elife. https://doi.org/10.7554/elife.06356

    Article  PubMed  PubMed Central  Google Scholar 

  • Goksan S et al (2018) The influence of the descending pain modulatory system on infant pain-related brain activity. Elife 7:e37125

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez DL, Fuchs JL, Droge MH (1993) Distribution of NMDA receptor binding in developing mouse spinal cord. Neurosci Lett 151:134–137

    CAS  PubMed  Google Scholar 

  • Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86:141–155

    PubMed  Google Scholar 

  • Granmo M, Petersson P, Schouenborg J (2008) Action-based body maps in the spinal cord emerge from a transitory floating organization. J Neurosci 28:5494–5503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley C et al (2018) Analgesic efficacy and safety of morphine in the Procedural Pain in Premature Infants (Poppi) study: randomised placebo-controlled trial. Lancet 392:2595–2605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann B et al (2004) The AMPA receptor subunits GluR-A and GluR-B reciprocally modulate spinal synaptic plasticity and inflammatory pain. Neuron 44:637–650. https://doi.org/10.1016/j.neuron.2004.10.029

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa-Ishii S, Inaba M, Umegaki H, Unno K, Wakabayashi K, Shimada A (2016) Endotoxemia-induced cytokine-mediated responses of hippocampal astrocytes transmitted by cells of the brain–immune interface. Sci Rep 6:25457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hathway G, Koch S, Low L, Fitzgerald M (2009) The changing balance of brainstem–spinal cord modulation of pain processing over the first weeks of rat postnatal life. J Physiol 587:2927–2935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hathway GJ, Vega-Avelaira D, Fitzgerald M (2012) A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. PAIN® 153:775–783

    CAS  Google Scholar 

  • Hermann C, Hohmeister J, Demirakça S, Zohsel K, Flor H (2006) Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain 125:278–285

    PubMed  Google Scholar 

  • Hohmeister J, Demirakça S, Zohsel K, Flor H, Hermann C (2009) Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur J Pain 13:94–101

    PubMed  Google Scholar 

  • Hohmeister J, Kroll A, Wollgarten-Hadamek I, Zohsel K, Demirakça S, Flor H, Hermann C (2010) Cerebral processing of pain in school-aged children with neonatal nociceptive input: an exploratory fMRI study. Pain 150:257–267

    PubMed  Google Scholar 

  • Holmberg H, Schouenborg J (1996) Postnatal development of the nociceptive withdrawal reflexes in the rat: a behavioural and electromyographic study. J Physiol 493:239–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hori Y, Kanda K (1994) Developmental alterations in NMDA receptor-mediated [Ca2+]i elevation in substantia gelatinosa neurons of neonatal rat spinal cord. Brain Res Dev Brain Res 80:141–148

    CAS  PubMed  Google Scholar 

  • Huang H-W, Wang W-C, Lin C-CK (2010) Influence of age on thermal thresholds, thermal pain thresholds, and reaction time. J Clin Neurosci 17:722–726

    PubMed  Google Scholar 

  • Huang T et al (2019) Identifying the pathways required for coping behaviours associated with sustained pain. Nature 565:86

    CAS  PubMed  Google Scholar 

  • Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524

    CAS  PubMed  Google Scholar 

  • Ingram RA, Fitzgerald M, Baccei ML (2008) Developmental changes in the fidelity and short-term plasticity of GABAergic synapses in the neonatal rat dorsal horn. J Neurophysiol 99:3144–3150. https://doi.org/10.1152/jn.01342.2007

    Article  CAS  PubMed  Google Scholar 

  • Jackman A, Fitzgerald M (2000) Development of peripheral hindlimb and central spinal cord innervation by subpopulations of dorsal root ganglion cells in the embryonic rat. J Comp Neurol 418:281–298

    CAS  PubMed  Google Scholar 

  • Kardon AP et al (2014) Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 82:573–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch SC, Fitzgerald M (2014) The selectivity of rostroventral medulla descending control of spinal sensory inputs shifts postnatally from A fibre to C fibre evoked activity. J Physiol 592:1535–1544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kollmann TR et al (2009) Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol 183:7150–7160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok CH, Devonshire IM, Bennett AJ, Hathway GJ (2014) Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. PAIN® 155:168–178

    CAS  Google Scholar 

  • LaPrairie JL, Murphy AZ (2007) Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury. Pain 132:S124–S133

    PubMed  PubMed Central  Google Scholar 

  • LaPrairie J, Murphy AZ (2009) Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front Behav Neurosci 3:31

    PubMed  PubMed Central  Google Scholar 

  • LaPrairie JL, Murphy AZ (2010) Long-term impact of neonatal injury in male and female rats: sex differences, mechanisms and clinical implications. Front Neuroendocrinol 31:193–202

    PubMed  PubMed Central  Google Scholar 

  • LaPrairie JL, Johns ME, Murphy AZ (2008) Preemptive morphine analgesia attenuates the long-term consequences of neonatal inflammation in male and female rats. Pediatr Res 64:625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson S (2002) Phenotype and function of somatic primary afferent nociceptive neurones with C-Aδ- or Aα/β-fibres. Exp Physiol 87:239–244

    PubMed  Google Scholar 

  • Legrain V, Iannetti GD, Plaghki L, Mouraux A (2011) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93:111–124

    PubMed  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8:791–797

    CAS  PubMed  Google Scholar 

  • Li J, Baccei ML (2009) Excitatory synapses in the rat superficial dorsal horn are strengthened following peripheral inflammation during early postnatal development. Pain 143:56–64. https://doi.org/10.1016/j.pain.2009.01.023

    Article  PubMed  Google Scholar 

  • Li J, Baccei ML (2011a) Neonatal tissue damage facilitates nociceptive synaptic input to the developing superficial dorsal horn via NGF-dependent mechanisms. Pain 152:1846–1855. https://doi.org/10.1016/j.pain.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Baccei ML (2011b) Pacemaker neurons within newborn spinal pain circuits. J Neurosci 31:9010–9022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Baccei ML (2014) Neonatal tissue injury reduces the intrinsic excitability of adult mouse superficial dorsal horn neurons. Neuroscience 256:392–402

    CAS  PubMed  Google Scholar 

  • Li J, Baccei ML (2016) Neonatal tissue damage promotes spike timing-dependent synaptic long-term potentiation in adult spinal projection neurons. J Neurosci 36:5405–5416. https://doi.org/10.1523/JNEUROSCI.3547-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Walker SM, Fitzgerald M, Baccei ML (2009a) Activity-dependent modulation of glutamatergic signaling in the developing rat dorsal horn by early tissue injury. J Neurophysiol 102:2208–2219. https://doi.org/10.1152/jn.00520.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Xie W, Zhang JM, Baccei ML (2009b) Peripheral nerve injury sensitizes neonatal dorsal horn neurons to tumor necrosis factor-alpha. Mol Pain 5:10. https://doi.org/10.1186/1744-8069-5-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G-L, Qiao Z-M, Han J-S, Luo F (2010) Dissociated behavior of low-frequency responses and high-frequency oscillations after systemic morphine administration in conscious rats. NeuroReport 21:2–7

    CAS  PubMed  Google Scholar 

  • Li J, Blankenship ML, Baccei ML (2013) Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life. J Neurosci 33:3352–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Kritzer E, Craig PE, Baccei ML (2015) Aberrant synaptic integration in adult lamina I projection neurons following neonatal tissue damage. J Neurosci 35:2438–2451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Sweitzer SM, Laurito CE, Yeomans DC (2004) Differential opioid inhibition of C- and Aδ-fiber mediated thermonociception after stimulation of the nucleus raphe magnus. Anesth Analg 98:414–419

    CAS  PubMed  Google Scholar 

  • Malessy MJ, Pondaag W (2011) Nerve surgery for neonatal brachial plexus palsy. J Pediatr Rehabil Med 4:141–148. https://doi.org/10.3233/PRM-2011-0166

    Article  PubMed  Google Scholar 

  • Maródi L (2006) Neonatal innate immunity to infectious agents. Infect Immun 74:1999–2006

    PubMed  PubMed Central  Google Scholar 

  • McKelvey R, Berta T, Old E, Ji RR, Fitzgerald M (2015) Neuropathic pain is constitutively suppressed in early life by anti-inflammatory neuroimmune regulation. J Neurosci 35:457–466. https://doi.org/10.1523/JNEUROSCI.2315-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell LM, Wall PD (1965) Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature 206:97–99

    CAS  PubMed  Google Scholar 

  • Morgan MM, Christie MJ (2011) Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. Br J Pharmacol 164:1322–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan M, Heinricher M, Fields H (1992) Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla. Neuroscience 47:863–871

    CAS  PubMed  Google Scholar 

  • Moriarty O, Harrington L, Beggs S, Walker S (2018) Opioid analgesia and the somatosensory memory of neonatal surgical injury in the adult rat. Br J Anaesth 121:314–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriarty O, Tu Y, Sengar AS, Salter MW, Beggs S, Walker SM (2019) Priming of adult incision response by early life injury: neonatal microglial inhibition has persistent but sexually dimorphic effects in adult rats. J Neurosci 39(16):1786–1798

    Google Scholar 

  • Moriceau S, Sullivan RM (2006) Maternal presence serves as a switch between learning fear and attraction in infancy. Nat Neurosci 9:1004–1006. https://doi.org/10.1038/nn1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss A, Beggs S, Vega-Avelaira D, Costigan M, Hathway GJ, Salter MW, Fitzgerald M (2007) Spinal microglia and neuropathic pain in young rats. Pain 128:215–224

    CAS  PubMed  Google Scholar 

  • Nahin RL, Sayer B, Stussman BJ, Feinberg TM (2019) 18-Year trends in the prevalence of, and health care use for, non-cancer pain in the United States: data from the medical expenditure panel survey. J Pain 20(7):796–809

    PubMed  Google Scholar 

  • Nakatsuka T, Ataka T, Kumamoto E, Tamaki T, Yoshimura M (2000) Alteration in synaptic inputs through C-afferent fibers to substantia gelatinosa neurons of the rat spinal dorsal horn during postnatal development. Neuroscience 99:549–556

    CAS  PubMed  Google Scholar 

  • Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. https://doi.org/10.1146/annurev-immunol-032713-120240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberlander TF, Grunau RE, Whitfield MF, Fitzgerald C, Pitfield S, Saul JP (2000) Biobehavioral pain responses in former extremely low birth weight infants at four months 9 corrected age. Pediatrics 105:e6

    CAS  PubMed  Google Scholar 

  • Park J-S, Nakatsuka T, Nagata K, Higashi H, Yoshimura M (1999) Reorganization of the primary afferent termination in the rat spinal dorsal horn during post-natal development. Dev Brain Res 113:29–36

    CAS  Google Scholar 

  • Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354:578–584. https://doi.org/10.1126/science.aaf8933

    Article  CAS  PubMed  Google Scholar 

  • Petitjean H et al (2015) Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep 13:1246–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto JG, Jones DG, Williams CK, Murphy KM (2015) Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex. Front Neural Circuits 9:3

    PubMed  PubMed Central  Google Scholar 

  • Ray P et al (2018) Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 159:1325–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren K et al (2004) Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain 110:588–596

    CAS  PubMed  Google Scholar 

  • Reynolds ML, Fitzgerald M (1995) Long-term sensory hyperinnervation following neonatal skin wounds. J Comp Neurol 358:487–498. https://doi.org/10.1002/cne.903580403

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ML, Fitzgerald M, Benowitz LI (1991) GAP-43 expression in developing cutaneous and muscle nerves in the rat hindlimb. Neuroscience 41:201–211

    CAS  PubMed  Google Scholar 

  • Rivera C et al (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255. https://doi.org/10.1038/16697

    Article  CAS  PubMed  Google Scholar 

  • Sandkühler J, Liu X (1998) Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 10:2476–2480

    PubMed  Google Scholar 

  • Schaffner AE, Behar T, Nadi S, Barker JL (1993) Quantitative analysis of transient GABA expression in embryonic and early postnatal rat spinal cord neurons. Dev Brain Res 72:265–276

    CAS  Google Scholar 

  • Scheffel J et al (2012) Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60:1930–1943

    PubMed  Google Scholar 

  • Scheible KM et al (2015) Developmentally determined reduction in CD31 during gestation is associated with CD8+ T cell effector differentiation in preterm infants. Clin Immunol 161:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schilder A, Magerl W, Hoheisel U, Klein T, Treede RD (2016) Electrical high-frequency stimulation of the human thoracolumbar fascia evokes long-term potentiation-like pain amplification. Pain 157:2309–2317. https://doi.org/10.1097/j.pain.0000000000000649

    Article  PubMed  Google Scholar 

  • Schmelzle-Lubiecki B, Campbell KA, Howard R, Franck L, Fitzgerald M (2007) Long-term consequences of early infant injury and trauma upon somatosensory processing. Eur J Pain 11:799–809

    CAS  PubMed  Google Scholar 

  • Simons SH, van Dijk M, Anand KS, Roofthooft D, van Lingen RA, Tibboel D (2003) Do we still hurt newborn babies? A prospective study of procedural pain and analgesia in neonates. Arch Pediatr Adolesc Med 157:1058–1064. https://doi.org/10.1001/archpedi.157.11.1058

    Article  PubMed  Google Scholar 

  • Slater R, Boyd S, Meek J, Fitzgerald M (2006) Cortical pain responses in the infant brain. Pain 123:332. https://doi.org/10.1016/j.pain.2006.05.009(author reply 332–334)

    Article  PubMed  Google Scholar 

  • Sorge RE et al (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18:1081–1083. https://doi.org/10.1038/nn.4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry MM et al (2017) Mapping of pain circuitry in early post-natal development using manganese-enhanced MRI in rats. Neuroscience 352:180–189. https://doi.org/10.1016/j.neuroscience.2017.03.052

    Article  CAS  PubMed  Google Scholar 

  • Sullivan RM, Landers M, Yeaman B, Wilson DA (2000) Good memories of bad events in infancy. Nature 407:38–39. https://doi.org/10.1038/35024156

    Article  CAS  PubMed  Google Scholar 

  • Teichert RW, Smith NJ, Raghuraman S, Yoshikami D, Light AR, Olivera BM (2012) Functional profiling of neurons through cellular neuropharmacology. Proc Natl Acad Sci 109:1388–1395

    CAS  PubMed  Google Scholar 

  • Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usoskin D et al (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145

    CAS  PubMed  Google Scholar 

  • van Praag H, Frenk H (1991) The development of stimulation-produced analgesia (SPA) in the rat. Brain Res Dev Brain Res 64:71–76

    PubMed  Google Scholar 

  • Vega-Avelaira D, McKelvey R, Hathway G, Fitzgerald M (2012) The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury. Mol Pain 8:30. https://doi.org/10.1186/1744-8069-8-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldenstrom A, Thelin J, Thimansson E, Levinsson A, Schouenborg J (2003) Developmental learning in a pain-related system: evidence for a cross-modality mechanism. J Neurosci 23:7719–7725

    PubMed  PubMed Central  Google Scholar 

  • Walker SM, Tochiki KK, Fitzgerald M (2009) Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity. Pain 147:99–106. https://doi.org/10.1016/j.pain.2009.08.017

    Article  PubMed  Google Scholar 

  • Walker SM, Fitzgerald M, Hathway GJ (2015) Surgical injury in the neonatal rat alters the adult pattern of descending modulation from the rostroventral medulla. Anesthesiol J Am Soc Anesthesiol 122:1391–1400

    Google Scholar 

  • Walker S, Melbourne A, O’Reilly H, Beckmann J, Eaton-Rosen Z, Ourselin S, Marlow N (2018) Somatosensory function and pain in extremely preterm young adults from the UK EPICure cohort: sex-dependent differences and impact of neonatal surgery. Br J Anaesth 121:623–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walwyn WM, Chen W, Kim H, Minasyan A, Ennes HS, McRoberts JA, Marvizón JCG (2016) Sustained suppression of hyperalgesia during latent sensitization by μ-, δ-, and κ-opioid receptors and α2A adrenergic receptors: role of constitutive activity. J Neurosci 36:204–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins LR, Wiertelak EP, Goehler LE, Smith KP, Martin D, Maier SF (1994) Characterization of cytokine-induced hyperalgesia. Brain Res 654:15–26

    CAS  PubMed  Google Scholar 

  • Weiss KE, Hahn A, Wallace DP, Biggs B, Bruce BK, Harrison TE (2013) Acceptance of pain: associations with depression, catastrophizing, and functional disability among children and adolescents in an interdisciplinary chronic pain rehabilitation program. J Pediatr Psychol 38:756–765. https://doi.org/10.1093/jpepsy/jst028

    Article  PubMed  Google Scholar 

  • Xu XJ, Dalsgaard CJ, Wiesenfeld-Hallin Z (1992) Spinal substance P and N-methyl-d-aspartate receptors are coactivated in the induction of central sensitization of the nociceptive flexor reflex. Neuroscience 51:641–648

    CAS  PubMed  Google Scholar 

  • Yang K, Kumamoto E, Furue H, Yoshimura M (1998) Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 255:135–138

    CAS  PubMed  Google Scholar 

  • Yoon S-Y, Patel D, Dougherty PM (2012) Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience 221:214–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-H, Wang X-M, Ennis M (2010) Effects of neonatal inflammation on descending modulation from the rostroventromedial medulla. Brain Res Bull 83:16–22

    PubMed  Google Scholar 

  • Zouikr I, Karshikoff B (2017) Lifetime modulation of the pain system via neuroimmune and neuroendocrine interactions. Front Immunol 8:276. https://doi.org/10.3389/fimmu.2017.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by National Institute of Neurological Disorders and Stroke (Grant no. NS 080889).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Baccei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brewer, C.L., Baccei, M.L. The development of pain circuits and unique effects of neonatal injury. J Neural Transm 127, 467–479 (2020). https://doi.org/10.1007/s00702-019-02059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-019-02059-z

Keywords

Navigation