Abstract
The striatum is richly innervated by mesencephalic dopaminergic neurons that modulate a diverse array of cellular and synaptic functions that control goal-directed actions and habits. The loss of this innervation has long been thought to be the principal cause of the cardinal motor symptoms of Parkinson’s disease (PD). Moreover, chronic, pharmacological overstimulation of striatal dopamine (DA) receptors is generally viewed as the trigger for levodopa-induced dyskinesia (LID) in late-stage PD patients. Here, we discuss recent advances in our understanding of the relationship between the striatum and DA, particularly as it relates to PD and LID. First, it has become clear that chronic perturbations of DA levels in PD and LID bring about cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity. Second, perturbations in DA signaling also bring about non-homeostatic aberrations in synaptic plasticity that contribute to disease symptoms. Third, it has become evident that striatal interneurons are major determinants of network activity and behavior in PD and LID. Finally, recent work examining the activity of SPNs in freely moving animals has revealed that the pathophysiology induced by altered DA signaling is not limited to imbalance in the average spiking in direct and indirect pathways, but involves more nuanced disruptions of neuronal ensemble activity.


Similar content being viewed by others
References
Alberico SL, Kim YC, Lence T, Narayanan NS (2017) Axial levodopa-induced dyskinesias and neuronal activity in the dorsal striatum. Neuroscience 343:240–249. https://doi.org/10.1016/j.neuroscience.2016.11.046
Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375
Alcacer C, Andreoli L, Sebastianutto I, Jakobsson J, Fieblinger T, Cenci MA (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest 127:720–734. https://doi.org/10.1172/JCI90132
Ariano MA (1983) Distribution of components of the guanosine 3′,5′-phosphate system in rat caudate-putamen Neuroscience 10:707–723
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163–5168. https://doi.org/10.1073/pnas.0700293104
Assous M, Tepper JM (2018) Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur J Neurosci. https://doi.org/10.1111/ejn.13881
Assous M, Kaminer J, Shah F, Garg A, Koos T, Tepper JM (2017) Differential processing of thalamic information via distinct striatal interneuron circuits. Nat Commun 8:15860. https://doi.org/10.1038/ncomms15860
Barbera G et al (2016) Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 92:202–213. https://doi.org/10.1016/j.neuron.2016.08.037
Bastide MF et al (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168. https://doi.org/10.1016/j.pneurobio.2015.07.002
Berke JD (2011) Functional properties of striatal fast-spiking interneurons. Front Syst Neurosci 5:45. https://doi.org/10.3389/fnsys.2011.00045
Bockelmann R, Wolf G, Ransmayr G, Riederer P (1994) NADPH-diaphorase/nitric oxide synthase containing neurons in normal and Parkinson’s disease putamen. J Neural Transm Park Dis Dement Sect 7:115–121
Bolam JP, Hanley JJ, Booth PA, Bevan MD (2000) Synaptic organisation of the basal ganglia. J Anat 196(Pt 4):527–542
Borgkvist A, Avegno EM, Wong MY, Kheirbek MA, Sonders MS, Hen R, Sulzer D (2015) Loss of striatonigral GABAergic presynaptic inhibition enables motor sensitization in Parkinsonian mice. Neuron 87:976–988. https://doi.org/10.1016/j.neuron.2015.08.022
Bracci E, Centonze D, Bernardi G, Calabresi P (2002) Dopamine excites fast-spiking interneurons in the striatum. J Neurophysiol 87:2190–2194. https://doi.org/10.1152/jn.00754.2001
Burguiere E, Monteiro P, Feng G, Graybiel AM (2013) Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses. compulsive behaviors. Science 340:1243–1246. https://doi.org/10.1126/science.1232380
Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12:4224–4233
Calabresi P et al (1999) A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J Neurosci 19:2489–2499
Calabresi P, Castrioto A, Di Filippo M, Picconi B (2013) New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 12:811–821. https://doi.org/10.1016/S1474-4422(13)70118-2
Cazorla M et al (2014) Dopamine D2 receptors regulate the anatomical and functional balance of basal. ganglia circuitry Neuron 81:153–164. https://doi.org/10.1016/j.neuron.2013.10.041
Cenci MA, Konradi C (2010) Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. Prog Brain Res 183:209–233. https://doi.org/10.1016/S0079-6123(10)83011-0
Centonze D, Gubellini P, Bernardi G, Calabresi P (1999) Permissive role of interneurons in corticostriatal synaptic plasticity. Brain Res Rev 31:1–5
Centonze D et al (2003) Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J Neurosci 23:6245–6254
Chalimoniuk M, Langfort J (2007) The effect of subchronic, intermittent L-DOPA treatment on neuronal nitric oxide synthase and soluble guanylyl cyclase expression and activity in the striatum and midbrain of normal and MPTP-treated mice. Neurochem Int 50:821–833. https://doi.org/10.1016/j.neuint.2007.02.002
Chen H, Lei H, Xu Q (2018) Neuronal activity pattern defects in the striatum in awake mouse model of Parkinson’s disease. Behav Brain Res 341:135–145. https://doi.org/10.1016/j.bbr.2017.12.018
Crittenden JR, Graybiel AM (2011) Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59. https://doi.org/10.3389/fnana.2011.00059
Day M et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259. https://doi.org/10.1038/nn1632
Dehorter N, Guigoni C, Lopez C, Hirsch J, Eusebio A, Ben-Ari Y, Hammond C (2009) Dopamine-deprived striatal GABAergic interneurons burst and generate repetitive gigantic IPSCs in medium spiny neurons. J Neurosci 29:7776–7787. https://doi.org/10.1523/JNEUROSCI.1527-09.2009
Dehorter N, Ciceri G, Bartolini G, Lim L, del Pino I, Marin O (2015) Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science 349:1216–1220. https://doi.org/10.1126/science.aab3415
Ding JD, Burette A, Nedvetsky PI, Schmidt HH, Weinberg RJ (2004) Distribution of soluble guanylyl cyclase in the rat brain. J Comp Neurol 472:437–448. https://doi.org/10.1002/cne.20054
Ding J et al (2006) RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 9:832–842. https://doi.org/10.1038/nn1700
Donato F, Rompani SB, Caroni P (2013) Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504:272–276. https://doi.org/10.1038/nature12866
Dorman DB, Jedrzejewska-Szmek J, Blackwell KT (2018) Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. eLife. https://doi.org/10.7554/eLife.38588
Du K et al (2017) Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc Natl Acad Sci USA 114:E7612-E7621 https://doi.org/10.1073/pnas.1704893114
Escande MV, Taravini IR, Zold CL, Belforte JE, Murer MG (2016) Loss of homeostasis in the direct pathway in a mouse model of asymptomatic Parkinson’s disease. J Neurosci 36:5686–5698. https://doi.org/10.1523/JNEUROSCI.0492-15.2016
Feyder M, Bonito-Oliva A, Fisone G (2011) L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci 5:71. https://doi.org/10.3389/fnbeh.2011.00071
Fieblinger T et al (2014) Cell type-specific plasticity of striatal projection neurons in parkinsonism and l-DOPA-induced dyskinesia. Nat Commun 5:5316. https://doi.org/10.1038/ncomms6316
Fieblinger T et al (2018) Striatonigral neurons divide into two distinct morphological-physiological phenotypes after chronic l-DOPA treatment in parkinsonian rats. Sci Rep 8:10068. https://doi.org/10.1038/s41598-018-28273-5
Fino E, Deniau JM, Venance L (2008) Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J Physiol 586:265–282. https://doi.org/10.1113/jphysiol.2007.144501
Fino E, Vandecasteele M, Perez S, Saudou F, Venance L (2018) Region-specific and state-dependent action of striatal GABAergic interneurons. Nat Commun 9:3339. https://doi.org/10.1038/s41467-018-05847-5
Flores-Barrera E, Vizcarra-Chacon BJ, Tapia D, Bargas J, Galarraga E (2010) Different corticostriatal integration in spiny projection neurons from direct and indirect pathways. Front Syst Neurosci 4:15. https://doi.org/10.3389/fnsys.2010.00015
Gage GJ, Stoetzner CR, Wiltschko AB, Berke JD (2010) Selective activation of striatal fast-spiking interneurons during choice execution. Neuron 67:466–479. https://doi.org/10.1016/j.neuron.2010.06.034
Gagnon D et al (2017) Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 7:41432. https://doi.org/10.1038/srep41432
Galvan A, Devergnas A, Wichmann T (2015) Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the Parkinsonian state Front Neuroanat 9:5. https://doi.org/10.3389/fnana.2015.00005
Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446–451. https://doi.org/10.1038/nn832
Gernert M, Hamann M, Bennay M, Loscher W, Richter A (2000) Deficit of striatal parvalbumin-reactive GABAergic interneurons and decreased basal ganglia output in a genetic rodent model of idiopathic paroxysmal dystonia. J Neurosci 20:7052–7058
Ghiglieri V et al (2016) Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiol Dis 86:140–153. https://doi.org/10.1016/j.nbd.2015.11.022
Giorgi M et al (2008) Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: new aspects in the pathogenetic mechanisms. Eur J Neurosci 28:941–950. https://doi.org/10.1111/j.1460-9568.2008.06387.x
Girasole AE et al (2018) A subpopulation of striatal neurons mediates levodopa-induced dyskinesia. Neuron 97:787–795 e786. https://doi.org/10.1016/j.neuron.2018.01.017
Gittis AH, Kreitzer AC (2012) Striatal microcircuitry and movement disorders. Trends Neurosci 35:557–564. https://doi.org/10.1016/j.tins.2012.06.008
Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30:2223–2234. https://doi.org/10.1523/JNEUROSCI.4870-09.2010
Gittis AH, Leventhal DK, Fensterheim BA, Pettibone JR, Berke JD, Kreitzer AC (2011) Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci 31:15727–15731. https://doi.org/10.1523/JNEUROSCI.3875-11.2011
Graves SM, Surmeier DJ (2019) Delayed spine pruning of direct pathway spiny projection neurons in a mouse model of Parkinson’s disease. Front Cell Neurosci 13:32. https://doi.org/10.3389/fncel.2019.00032
Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia Trends Neurosci 13:244–254
Graybiel AM (2008) Habits, rituals, and the evaluative brain. Ann Rev Neurosci 31:359–387. https://doi.org/10.1146/annurev.neuro.29.051605.112851
Hernandez LF, Kubota Y, Hu D, Howe MW, Lemaire N, Graybiel AM (2013) Selective effects of dopamine depletion and L-DOPA therapy on learning-related firing dynamics of striatal neurons. J Neurosci 33:4782–4795. https://doi.org/10.1523/JNEUROSCI.3746-12.2013
Hernandez LF, Castela I, Ruiz-DeDiego I, Obeso JA, Moratalla R (2017) Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease. Mov Disord 32:530–537. https://doi.org/10.1002/mds.26947
Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2 + influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966. https://doi.org/10.1038/nn.2592
Jedrzejewska-Szmek J, Damodaran S, Dorman DB, Blackwell KT (2017) Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. Eur J Neurosci 45:1044–1056. https://doi.org/10.1111/ejn.13287
Kalanithi PS et al (2005) Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome Proc Natl Acad Sci USA 102:13307–13312. https://doi.org/10.1073/pnas.0502624102
Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM (2010) Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 518:277–291. https://doi.org/10.1002/cne.22206
Ketzef M, Spigolon G, Johansson Y, Bonito-Oliva A, Fisone G, Silberberg G (2017) Dopamine depletion impairs bilateral sensory processing in the striatum in a pathway-dependent manner. Neuron 94:855–865 e855. https://doi.org/10.1016/j.neuron.2017.05.004
Kita H, Kosaka T, Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536:1–15
Klaus A, Martins GJ, Paixao VB, Zhou P, Paninski L, Costa RM (2017) The spatiotemporal organization of the striatum encodes action space. Neuron 95:1171–1180 e1177. https://doi.org/10.1016/j.neuron.2017.08.015
Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626. https://doi.org/10.1038/nature09159
Kreitzer AC, Malenka RC (2005) Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci 25:10537–10545. https://doi.org/10.1523/JNEUROSCI.2959-05.2005
Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647. https://doi.org/10.1038/nature05506
Kubota Y, Kawaguchi Y (2000) Dependence of GABAergic synaptic areas on the interneuron type and target size. J Neurosci 20:375–386
Lagler M et al (2016) Divisions of identified parvalbumin-expressing basket cells during working memory-guided decision making. Neuron 91:1390–1401. https://doi.org/10.1016/j.neuron.2016.08.010
Lee K, Holley SM, Shobe JL, Chong NC, Cepeda C, Levine MS, Masmanidis SC (2017) Parvalbumin interneurons modulate striatal output and enhance performance during associative learning. Neuron 93:1451–1463 e1454. https://doi.org/10.1016/j.neuron.2017.02.033
Lerner TN, Kreitzer AC (2012) RGS4 is required for dopaminergic control of striatal LTD and susceptibility to Parkinsonian motor deficits. Neuron 73:347–359. https://doi.org/10.1016/j.neuron.2011.11.015
Lerner TN, Ye L, Deisseroth K (2016) Communication in neural circuits: tools, opportunities challenges. Cell 164:1136–1150. https://doi.org/10.1016/j.cell.2016.02.027
Mallet N, Le Moine C, Charpier S, Gonon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869. https://doi.org/10.1523/JNEUROSCI.5027-04.2005
Mallet N, Ballion B, Le Moine C, Gonon F (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26:3875–3884. https://doi.org/10.1523/JNEUROSCI.4439-05.2006
Mathur BN, Lovinger DM (2012) Serotonergic action on dorsal striatal function. Park Relat Disord 18(Suppl 1):S129–S131. https://doi.org/10.1016/S1353-8020(11)70040-2
Melzer S, Gil M, Koser DE, Michael M, Huang KW, Monyer H (2017) Distinct corticostriatal GABAergic neurons modulate striatal output neurons and motor activity. Cell Rep 19:1045–1055. https://doi.org/10.1016/j.celrep.2017.04.024
Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425
Monteiro P, Barak B, Zhou Y, McRae R, Rodrigues D, Wickersham IR, Feng G (2018) Dichotomous parvalbumin interneuron populations in dorsolateral and dorsomedial striatum. J Physiol 596:3695–3707. https://doi.org/10.1113/JP275936
Murphy JA et al (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2 + signaling in spines J Neurosci 34:869–879. https://doi.org/10.1523/JNEUROSCI.4538-13.2014
Nakamura T, Nagata M, Yagi T, Graybiel AM, Yamamori T, Kitsukawa T (2017) Learning new sequential stepping patterns requires striatal plasticity during the earliest phase of acquisition. Eur J Neurosci 45:901–911. https://doi.org/10.1111/ejn.13537
Nelson AB, Kreitzer AC (2014) Reassessing models of basal ganglia function and dysfunction. Ann Rev Neurosci 37:117–135. https://doi.org/10.1146/annurev-neuro-071013-013916
Nishijima H et al (2014) Morphologic changes of dendritic spines of striatal neurons in the levodopa-induced dyskinesia model. Mov Disord 29:336–343. https://doi.org/10.1002/mds.25826
O’Hare JK, Ade KK, Sukharnikova T, Van Hooser SD, Palmeri ML, Yin HH, Calakos N (2016) Pathway-specific striatal substrates for habitual behavior. Neuron 89:472–479. https://doi.org/10.1016/j.neuron.2015.12.032
O’Hare JK et al (2017) Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior. eLife. https://doi.org/10.7554/eLife.26231
Oran Y, Bar-Gad I (2018) Loss of balance between striatal feedforward inhibition and corticostriatal excitation leads to tremor. J Neurosci 38:1699–1710. https://doi.org/10.1523/JNEUROSCI.2821-17.2018
Owen SF, Berke JD, Kreitzer AC (2018) Fast-spiking interneurons supply feedforward control of bursting, calcium, and plasticity for efficient learning. Cell 172:683–695 e615. https://doi.org/10.1016/j.cell.2018.01.005
Padovan-Neto FE, Echeverry MB, Chiavegatto S, Del-Bel E (2011) Nitric oxide synthase inhibitor improves de novo and long-term l-DOPA-induced dyskinesia in hemiparkinsonian rats. Front Syst Neurosci 5:40. https://doi.org/10.3389/fnsys.2011.00040
Parker JG et al (2018) Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557:177–182. https://doi.org/10.1038/s41586-018-0090-6
Perez XA, Zhang D, Bordia T, Quik M (2017) Striatal D1 medium spiny neuron activation induces dyskinesias in parkinsonian mice. Mov Disord 32:538–548. https://doi.org/10.1002/mds.26955
Perrin E, Venance L (2018) Bridging the gap between striatal plasticity and learning. Curr Opin Neurobiol 54:104–112. https://doi.org/10.1016/j.conb.2018.09.007
Picconi B et al (2003) Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nature Neurosci 6:501–506. https://doi.org/10.1038/nn1040
Picconi B et al (2011) Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134:375–387. https://doi.org/10.1093/brain/awq342
Plotkin JL, Day M, Surmeier DJ (2011) Synaptically driven state transitions in distal dendrites of striatal spiny neurons. Nat Neurosci 14:881–888. https://doi.org/10.1038/nn.2848
Plotkin JL et al (2014) Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington‘s disease. Neuron 83:178–188. https://doi.org/10.1016/j.neuron.2014.05.032
Rafalovich IV, Melendez AE, Plotkin JL, Tanimura A, Zhai S, Surmeier DJ (2015) Interneuronal nitric oxide signaling mediates post-synaptic long-term depression of striatal glutamatergic synapses. Cell Rep 13:1336–1342. https://doi.org/10.1016/j.celrep.2015.10.015
Ruffieux A, Schultz W (1980) Dopaminergic activation of reticulata neurones in the substantia nigra. Nature 285:240–241
Ryan MB, Bair-Marshall C, Nelson AB (2018) Aberrant striatal activity in parkinsonism and levodopa-induced dyskinesia. Cell Rep 23:3438–3446 e3435. https://doi.org/10.1016/j.celrep.2018.05.059
Sagi Y et al (2014) Nitric oxide regulates synaptic transmission between spiny projection neurons. Proc Natl Acad Sci USA 111:17636–17641. https://doi.org/10.1073/pnas.1420162111
Sammut S, Dec A, Mitchell D, Linardakis J, Ortiguela M, West AR (2006) Phasic dopaminergic transmission increases NO efflux in the rat dorsal striatum via a neuronal NOS and a dopamine D(1/5) receptor-dependent mechanism. Neuropsychopharmacology 31:493–505. https://doi.org/10.1038/sj.npp.1300826
Sancesario G et al (2004) Down-regulation of nitrergic transmission in the rat striatum after chronic nigrostriatal deafferentation. Eur J Neurosci 20:989–1000. https://doi.org/10.1111/j.1460-9568.2004.03566.x
Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851. https://doi.org/10.1126/science.1160575
Shen WX et al (2016) M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of l-DOPA-induced dyskinesia. Neuron 90(88):1139–1139. https://doi.org/10.1016/j.neuron.2016.05.017 pg 762, 2015)
Shepherd GMG (2013) Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14:278–291. https://doi.org/10.1038/nrn3469
Silberberg G, Bolam JP (2015) Local and afferent synaptic pathways in the striatal microcircuitry. Curr Opin Neurobiol 33:182–187. https://doi.org/10.1016/j.conb.2015.05.002
Sippy T, Lapray D, Crochet S, Petersen CC (2015) Cell-type-specific sensorimotor processing in striatal projection neurons during goal-directed. Behav Neuron 88:298–305. https://doi.org/10.1016/j.neuron.2015.08.039
Solis O, Espadas I, Del-Bel EA, Moratalla R (2015) Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(−/−) aphakia mice Neurobiol Dis 73:49–59. https://doi.org/10.1016/j.nbd.2014.09.010
Straub C, Saulnier JL, Begue A, Feng DD, Huang KW, Sabatini BL (2016) Principles of Synaptic Organization of GABAergic interneurons in the striatum. Neuron 92:84–92. https://doi.org/10.1016/j.neuron.2016.09.007
Suarez LM, Solis O, Carames JM, Taravini IR, Solis JM, Murer MG, Moratalla R (2014) L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice. Biol Psychiatry 75:711–722. https://doi.org/10.1016/j.biopsych.2013.05.006
Suarez LM, Alberquilla S, Garcia-Montes JR, Moratalla R (2018) Differential synaptic remodeling by dopamine in direct and indirect striatal projection neurons in Pitx3(−/−) mice, a genetic model of Parkinson’s disease. J Neurosci 38:3619–3630. https://doi.org/10.1523/JNEUROSCI.3184-17.2018
Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397
Surmeier DJ, Graves SM, Shen W (2014) Dopaminergic modulation of striatal networks in health and Parkinson’s disease. Curr Opin Neurobiol 29:109–117. https://doi.org/10.1016/j.conb.2014.07.008
Tagliaferro P, Burke RE (2016) Retrograde axonal degeneration in Parkinson disease. J Park Dis 6:1–15. https://doi.org/10.3233/JPD-150769
Tecuapetla F, Jin X, Lima SQ, Costa RM (2016) Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution. Cell 166:703–715. https://doi.org/10.1016/j.cell.2016.06.032
Tepper JM, Tecuapetla F, Koos T, Ibanez-Sandoval O (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 4:150. https://doi.org/10.3389/fnana.2010.00150
Tepper JM, Koos T, Ibanez-Sandoval O, Tecuapetla F, Faust TW, Assous M (2018) Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018. Front Neuroanat 12:91 https://doi.org/10.3389/fnana.2018.00091
Trevitt JT, Morrow J, Marshall JF (2005) Dopamine manipulation alters immediate-early gene response of striatal parvalbumin interneurons to cortical stimulation. Brain Res 1035:41–50. https://doi.org/10.1016/j.brainres.2004.11.039
Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of. GABA. Nature 490:262–266. https://doi.org/10.1038/nature11466
Trusel M et al (2015) Coordinated regulation of synaptic plasticity at striatopallidal and striatonigral neurons orchestrates motor control. Cell Rep 13:1353–1365. https://doi.org/10.1016/j.celrep.2015.10.009
Turrigiano G (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4:a005736. https://doi.org/10.1101/cshperspect.a005736
Vilchis C, Bargas J, Ayala GX, Galvan E, Galarraga E (2000) Ca2 + channels that activate Ca2+-dependent K + currents neostriatal neurons. Neuroscience 95:745–752
Villalba RM, Lee H, Smith Y (2009) Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys. Exp Neurol 215:220–227. https://doi.org/10.1016/j.expneurol.2008.09.025
Waszcak BL, Walters JR (1983) Dopamine modulation of the effects of gamma-aminobutyric acid on substantia nigra pars reticulata neurons. Science 220:218–221
Wickens JR, Arbuthnott GW, Shindou T (2007) Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. Progr Brain Res 160:313–329. https://doi.org/10.1016/S0079-6123(06)60018-6
Wilson CJ (2007) GABAergic inhibition in the neostriatum. Progr Brain Res 160:91–110. https://doi.org/10.1016/S0079-6123(06)60006-X
Wu YW, Kim JI, Tawfik VL, Lalchandani RR, Scherrer G, Ding JB (2015) Input- and cell-type-specific endocannabinoid-dependent LTD the striatum. Cell Rep 10:75–87. https://doi.org/10.1016/j.celrep.2014.12.005
Xu M, Li L, Pittenger C (2016) Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome produces anxiety elevated grooming. Neuroscience 324:321–329. https://doi.org/10.1016/j.neuroscience.2016.02.074
Yan Z, Flores-Hernandez J, Surmeier DJ (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103:1017–1024
Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476. https://doi.org/10.1038/nrn1919
Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ (2018) Striatal synapses, circuits, and Parkinson’s disease. Curr Opin Neurobiol 48:9–16. https://doi.org/10.1016/j.conb.2017.08.004
Acknowledgements
This work was supported by grants from the JPB and IDP Foundations, USPHS (NS34696) and the Bumpus Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhai, S., Shen, W., Graves, S.M. et al. Dopaminergic modulation of striatal function and Parkinson’s disease. J Neural Transm 126, 411–422 (2019). https://doi.org/10.1007/s00702-019-01997-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00702-019-01997-y