Skip to main content

Advertisement

Log in

Explorative results from multistep screening for potential genetic risk loci of Alzheimer’s disease in the longitudinal VITA study cohort

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that preferentially affects individuals of advanced age. Heritability estimates for AD range between 60 and 80%, but only few genetic risk factors have been identified so far. In the present explorative study, we aimed at characterizing the genetic contribution to late-onset AD in participants of the Vienna Transdanube Aging (VITA) longitudinal birth cohort study in a two-step approach. First, we performed a genome-wide screen of pooled DNA samples (n = 588) to identify allele frequency differences between AD patients and non-AD individuals using life-time diagnoses made at the age of 80 (t = 60 months). This analysis suggested a high proportion of brain-expressed genes required for cell adhesion, cell signaling and cell morphogenesis, and also scored in known AD risk genes. In a second step, we confirmed associations using individual genotypes of top-ranked markers examining AD diagnoses as well as the dimensional scores: FULD and MMSE determined up to the age of 82.5 (t = 90 months). Taken together, our study proposes genes ANKS1B, ENST00000414107, LOC100505811, SLC22A14, QRFPR, ZDHHC8P1, ADAMTS3 and PPFIA1 as possible new candidates involved in the etiology of late-onset AD, with further research being needed to clarify their exact roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, Dowzell K, Cichon S, Hillmer AM, O’Donovan MC et al (2008) A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics 1:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen Institute for Brain Science (2016) Allen Brain Atlas. http://www.brain-map.org/. Accessed 13 Feb 2016

  • Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An english translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8(6):429–431

    Article  CAS  PubMed  Google Scholar 

  • Ashford JW, Mortimer JA (2002) Non-familial Alzheimer’s disease is mainly due to genetic factors. J Alzheimers Dis 4(3):169–177

    Article  PubMed  Google Scholar 

  • Barnard ND, Bush AI, Ceccarelli A, Cooper J, de Jager CA, Erickson KI, Fraser G, Kesler S, Levin SM, Lucey B et al (2014) Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging 35(Suppl 2):S74–S78

    Article  PubMed  Google Scholar 

  • Barnes DE, Yaffe K, Byers AL, McCormick M, Schaefer C, Whitmer RA (2012) Midlife vs late-life depressive symptoms and risk of dementia: differential effects for Alzheimer disease and vascular dementia. Arch Gen Psychiatry 69(5):493–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartl J, Scholz CJ, Hinterberger M, Jungwirth S, Wichart I, Rainer MK, Kneitz S, Danielczyk W, Tragl KH, Fischer P et al (2011) Disorder-specific effects of polymorphisms at opposing ends of the insulin degrading enzyme gene. BMC Med Genet 12:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, Corneveaux JJ, Hardy J, Vonsattel JP, Younkin SG et al (2014) Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet 10(9):e1004606

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Di Domenico F, Barone E (2014) Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta 1842(9):1693–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JK (2014) Nutrition and the brain: what advice should we give? Neurobiol Aging 35(Suppl 2):S79–S83

    Article  PubMed  Google Scholar 

  • Davis OS, Plomin R, Schalkwyk LC (2009) The SNPMaP package for R: a framework for genome-wide association using DNA pooling on microarrays. Bioinformatics 25(2):281–283

    Article  CAS  PubMed  Google Scholar 

  • Fischer P, Jungwirth S, Krampla W, Weissgram S, Kirchmeyr W, Schreiber W, Huber K, Rainer M, Bauer P, Tragl KH (2002) Vienna Transdanube Aging “VITA”: study design, recruitment strategies and level of participation. J Neural Transm Suppl 62:105–116

    Article  Google Scholar 

  • Fischer P, Zehetmayer S, Jungwirth S, Weissgram S, Krampla W, Hinterberger M, Torma S, Rainer M, Huber K, Hoenigschnabl S et al (2008) Risk factors for Alzheimer dementia in a community-based birth cohort at the age of 75 years. Dement Geriatr Cogn Disord 25(6):501–507

    Article  PubMed  Google Scholar 

  • Folstein MF, Robins LN, Helzer JE (1983) The mini-mental state examination. Arch Gen Psychiatry 40(7):812

    Article  CAS  PubMed  Google Scholar 

  • Fuld PA (1980) Guaranteed stimulus-processing in the evaluation of memory and learning. Cortex 16(2):255–271

    Article  CAS  PubMed  Google Scholar 

  • Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174

    Article  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghersi E, Vito P, Lopez P, Abdallah M, D’Adamio L (2004) The intracellular localization of amyloid beta protein precursor (AbetaPP) intracellular domain associated protein-1 (AIDA-1) is regulated by AbetaPP and alternative splicing. J Alzheimers Dis 6(1):67–78

    Article  CAS  PubMed  Google Scholar 

  • Grünblatt E, Schlosser R, Fischer P, Fischer MO, Li J, Koutsilieri E, Wichart I, Sterba N, Rujescu D, Moller HJ et al (2005) Oxidative stress related markers in the “VITA” and the centenarian projects. Neurobiol Aging 26(4):429–438

    Article  PubMed  Google Scholar 

  • Grünblatt E, Hupp E, Bambula M, Zehetmayer S, Jungwirth S, Tragl KH, Fischer P, Riederer P (2006a) Association study of BDNF and CNTF polymorphism to depression in non-demented subjects of the “VITA” study. J Affect Disord 96(1–2):111–116

    Article  PubMed  Google Scholar 

  • Grünblatt E, Loffler C, Zehetmayer S, Jungwirth S, Tragl KH, Riederer P, Fischer P (2006b) Association study of the 5-HTTLPR polymorphism and depression in 75-Year-Old nondemented subjects from the Vienna Transdanube Aging (VITA) study. J Clin Psychiatry 67(9):1373–1378

    Article  PubMed  Google Scholar 

  • Grünblatt E, Reif A, Jungwirth S, Galimberti D, Weber H, Scarpini E, Sauer C, Wichart I, Rainer MK, Huber K et al (2011) Genetic variation in the choline O-acetyltransferase gene in depression and Alzheimer’s disease: the VITA and Milano studies. J Psychiatr Res 45(9):1250–1256

    Article  PubMed  Google Scholar 

  • Guerreiro R, Bras J, Hardy J (2013) SnapShot: genetics of Alzheimer’s disease. Cell 155(4):968–968, e961

  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohman TJ, Bell SP, Jefferson AL (2015) Alzheimer’s disease neuroimaging I: the role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease. JAMA Neurol 72(5):520–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollingworth P, Harold D, Jones L, Owen MJ, Williams J (2011a) Alzheimer’s disease genetics: current knowledge and future challenges. Int J Geriatr Psychiatry 26(8):793–802

    Article  PubMed  Google Scholar 

  • Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V et al (2011b) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homer N, Tembe WD, Szelinger S, Redman M, Stephan DA, Pearson JV, Nelson SF, Craig D (2008) Multimarker analysis and imputation of multiple platform pooling-based genome-wide association studies. Bioinformatics 24(17):1896–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International HapMap C, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861

    Article  Google Scholar 

  • Jacob AL, Jordan BA, Weinberg RJ (2010) Organization of amyloid-beta protein precursor intracellular domain-associated protein-1 in the rat brain. J Comp Neurol 518(16):3221–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppanen VM, Holopainen T, Kivela R, Ortega S, Karpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129(19):1962–1971

    Article  CAS  PubMed  Google Scholar 

  • Jiao B, Liu X, Zhou L, Wang MH, Zhou Y, Xiao T, Zhang W, Sun R, Waye MM, Tang B et al (2015) Polygenic analysis of late-onset Alzheimer’s disease from Mainland China. PLoS One 10(12):e0144898

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan BA, Fernholz BD, Khatri L, Ziff EB (2007) Activity-dependent AIDA-1 nuclear signaling regulates nucleolar numbers and protein synthesis in neurons. Nat Neurosci 10(4):427–435

    Article  CAS  PubMed  Google Scholar 

  • Jordan KW, Craver KL, Magwire MM, Cubilla CE, Mackay TF, Anholt RR (2012) Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster. PLoS One 7(6):e38722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Kim EM, Lee JP, Park CH, Kim S, Seo JH, Chang KA, Yu E, Jeong SJ, Chong YH et al (2003) C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. FASEB J 17(13):1951–1953

    CAS  PubMed  Google Scholar 

  • Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Goff C, Somerville RP, Kesteloot F, Powell K, Birk DE, Colige AC, Apte SS (2006) Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis. Development 133(8):1587–1596

    Article  PubMed  Google Scholar 

  • Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O’Dowd BF (2001) Discovery and mapping of ten novel G protein-coupled receptor genes. Gene 275(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Macgregor S, Visscher PM, Montgomery G (2006) Analysis of pooled DNA samples on high density arrays without prior knowledge of differential hybridization rates. Nucleic Acids Res 34(7):e55

    Article  PubMed  PubMed Central  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7):939–944

    Article  CAS  PubMed  Google Scholar 

  • Musicco M (2009) Gender differences in the occurrence of Alzheimer’s disease. Funct Neurol 24(2):89–92

    PubMed  Google Scholar 

  • Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, Beecham GW, Rajbhandary RA, Hamilton-Nelson KL, Wang LS et al (2014) Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. JAMA Neurol 71(11):1394–1404

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128

    PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. 3.2.0 edn. R Foundation for Statistical Computing

  • Reif A, Grünblatt E, Herterich S, Wichart I, Rainer MK, Jungwirth S, Danielczyk W, Deckert J, Tragl KH, Riederer P et al (2011) Association of a functional NOS1 promoter repeat with Alzheimer’s disease in the VITA cohort. J Alzheimers Dis 23(2):327–333

    CAS  PubMed  Google Scholar 

  • Scholz CJ, Jungwirth S, Danielczyk W, Weber H, Wichart I, Tragl KH, Fischer P, Riederer P, Deckert J, Grünblatt E (2014) Investigation of association of serotonin transporter and monoamine oxidase-A genes with Alzheimer’s disease and depression in the VITA study cohort: a 90-month longitudinal study. Am J Med Genet B Neuropsychiatr Genet 165B(2):184–191

    Article  PubMed  Google Scholar 

  • Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slomnicki LP, Lesniak W (2008) A putative role of the amyloid precursor protein intracellular domain (AICD) in transcription. Acta Neurobiol Exp (Wars) 68(2):219–228

    Google Scholar 

  • Spangler SA, Hoogenraad CC (2007) Liprin-alpha proteins: scaffold molecules for synapse maturation. Biochem Soc Trans 35(Pt 5):1278–1282

    Article  CAS  PubMed  Google Scholar 

  • Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11(11):1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Takayasu S, Sakurai T, Iwasaki S, Teranishi H, Yamanaka A, Williams SC, Iguchi H, Kawasawa YI, Ikeda Y, Sakakibara I et al (2006) A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc Natl Acad Sci USA 103(19):7438–7443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosto G, Reitz C (2013) Genome-wide association studies in Alzheimer’s disease: a review. Curr Neurol Neurosci Rep 13(10):381

    Article  PubMed  PubMed Central  Google Scholar 

  • Vucicevic D, Schrewe H, Orom UA (2014) Molecular mechanisms of long ncRNAs in neurological disorders. Front Genet 5:48

    PubMed  PubMed Central  Google Scholar 

  • Weissflog L, Scholz CJ, Jacob CP, Nguyen TT, Zamzow K, Gross-Lesch S, Renner TJ, Romanos M, Rujescu D, Walitza S et al (2013) KCNIP4 as a candidate gene for personality disorders and adult ADHD. Eur Neuropsychopharmacol 23(6):436–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participants of the VITA study and their families. We credit the excellent technical assistance of Miryame Hofmann, Terri Töppner and Margarete Göbel.

Author information

Authors and Affiliations

Authors

Contributions

CJS and HW performed data analysis; SJ, WD, KHT and PF were involved in participant recruitment and coordinated the cohort study; HW and AR generated genotyping data; PR, JD and EG supervised the study, CJS, JD and EG wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Edna Grünblatt.

Ethics declarations

Informed consent

The VITA study was carried out with the permission of the Ethics Committee of the City of Vienna, Austria and conforms to the Declaration of Helsinki; each participant provided written informed consent.

Conflict of interest

The authors declare that they have no competing interests.

Funding

This work has been funded by the Ludwig Boltzmann Institute of Aging Research (Vienna, Austria) and the Alzheimer Forschung Initiative e.V. (AFI) with Grant 09802 to EG. CJS is supported by the Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Grant Z-6.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholz, CJ., Weber, H., Jungwirth, S. et al. Explorative results from multistep screening for potential genetic risk loci of Alzheimer’s disease in the longitudinal VITA study cohort. J Neural Transm 125, 77–87 (2018). https://doi.org/10.1007/s00702-017-1796-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1796-6

Keywords

Navigation