Skip to main content

Advertisement

Log in

Dopamine differently modulates central cholinergic circuits in patients with Alzheimer disease and CADASIL

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Short-latency afferent inhibition (SAI) technique gives the opportunity to non-invasively test an inhibitory circuit in the human cerebral motor cortex that depends mainly on central cholinergic activity. Important SAI abnormalities have been reported in both patients with Alzheimer disease (AD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a model of “pure” vascular dementia (VD). Interestingly, a normalization of SAI was observed in AD after levo-dopa (l-dopa) administration. We aimed to determine whether the pharmacological manipulation of the dopaminergic system can also interfere with SAI test in CADASIL patients, compared with AD patients and healthy controls. SAI was found to be significantly reduced in both patient groups. l-Dopa significantly increased SAI in the AD patients, while it failed to restore SAI abnormality in CADASIL patients. Therefore, l-dopa-mediated changes on SAI in AD patients seem to be a specific effect. The present study supports the notion that relationship between acetylcholine and dopamine systems may be specifically abnormal in AD. l-Dopa challenge may thus be able to differentiate the patients with AD or a mixed form of dementia from those with “pure” VD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberici A, Bonato C, Calabria M, Agosti C, Zanetti O, Miniussi C, Padovani A, Rossini PM, Borroni B (2008) The contribution of TMS to frontotemporal dementia variants. Acta Neurol Scand 118:275–280

    Article  PubMed  CAS  Google Scholar 

  • Allard PO, Rinne J, Marcusson JO (1994) Dopamine uptake sites in Parkinson’s disease and in dementia of the Alzheimer type. Brain Res 637:262–266

    Article  PubMed  CAS  Google Scholar 

  • Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    Article  PubMed  CAS  Google Scholar 

  • Berlanga ML, Simpson TK, Alcantara AA (2005) Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release. J Comp Neurol 492:34–49

    Article  PubMed  CAS  Google Scholar 

  • Blokland A (1995) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Brain Res Rev 21:285–300

    Article  PubMed  CAS  Google Scholar 

  • Brooks JM, Sarter M, Bruno JP (2007) D2-like receptors in nucleus accumbens negatively modulate acetylcholine release in prefrontal cortex. Neuropharmacology 53:455–463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buffon F, Porcher R, Hernandez K, Kurtz A, Pointeau S, Vahedi K, Bousser MG, Chabriat H (2006) Cognitive profile in CADASIL. J Neurol Neurosurg Psychiatry 77:175–180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Calabresi P, Picconi B, Parnetti L, Di Filippo M (2006) A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine–acetylcholine synaptic balance. Lancet Neurol 5:974–983

    Article  PubMed  CAS  Google Scholar 

  • Cao YJ, Surowy CS, Puttfarcken PS (2005) Different nicotinic acetylcholine receptor subtypes mediating striatal and prefrontal cortical [3H]dopamine release. Neuropharmacology 48:72–79

    Article  PubMed  CAS  Google Scholar 

  • Charlton RA, Morris RG, Nitkunan A, Markus HS (2006) The cognitive profiles of CADASIL and sporadic small vessel disease. Neurology 66:1523–1526

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Barbaresi P, Melone M, Ducati A (1999) Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex. Cereb Cortex 9:110–120

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, Ebinger G, Vauquelin G (1990) D1-dopamine receptor abnormality in frontal cortex points to a functional alteration of cortical cell membranes in Alzheimer’s disease. Arch Neurol 47:761–763

    Article  PubMed  Google Scholar 

  • Del Arco A, Mora F, Mohammed AH, Fuxe K (2007) Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm 114:185–193

    Article  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  CAS  Google Scholar 

  • Di Cara B, Panayi F, Gobert A, Dekeyne A, Sicard D, De Groote L, Millan MJ (2007) Activation of dopamine D1 receptors enhances cholinergic transmission and social cognition: a parallel dialysis and behavioural study in rats. Int J Neuropsychopharmacol 10:383–399

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Ghirlanda S, Ranieri F, Gainotti G, Tonali P (2005a) Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg Psychiatry 76:1064–1069

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Tonali PA, Ziemann U (2005b) Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol 569:315–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Saturno E, Profice P, Marra C, Daniele A, Ranieri F, Quaranta D, Gainotti G, Tonali PA (2007) Functional evaluation of cerebral cortex in dementia with Lewy bodies. Neuroimage 37:422–429

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Profice P, Marra C, Ranieri F, Quaranta D, Gainotti G, Tonali PA (2008) In vivo functional evaluation of central cholinergic circuits in vascular dementia. Clin Neurophysiol 119:2494–2500

    Article  PubMed  Google Scholar 

  • Diez-Ariza M, Garcia-AllozaM Lasheras B, Del Rio J, Ramirez MJ (2002) GABA(A) receptor antagonists enhance cortical acetylcholine release induced by 5-HT(3) receptor blockade in freely moving rats. Brain Res 956:81–85

    Article  PubMed  CAS  Google Scholar 

  • Gaykema RP, Zaborszky L (1996) Direct catecholaminergic–cholinergic interactions in the basal forebrain. II. Substantia nigra–ventral tegmental area projections to cholinergic neurons. J Comp Neurol 374:555–577

    Article  PubMed  CAS  Google Scholar 

  • Geula C, Mesulam MM (1999) Cholinergic systems in Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease, 2nd edn. Williams & Wilkins, Philadelphia, Lippincott

    Google Scholar 

  • Giorgetti M, Bacciottini L, Giovannini MG, Colivicchi MA, Goldfarb J, Blandina P (2000) Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. Eur J Neurosci 12:1941–1948

    Article  PubMed  CAS  Google Scholar 

  • Gottfries CG, Blennow K, Karlsson I, Wallin A (1994) The neurochemistry of vascular dementia. Dementia 5:163–167

    PubMed  CAS  Google Scholar 

  • Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Solé J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882

    Article  PubMed  CAS  Google Scholar 

  • Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335

    Article  PubMed  CAS  Google Scholar 

  • Guillegde AT, Stuart GJ (2005) Cholinergic inhibition of neocortical pyramidal neurons. J Neurosci 25:10308–10320

    Article  Google Scholar 

  • Haglund M, Sjobeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532

    Article  PubMed  Google Scholar 

  • Hersi AI, Kitaichi K, Srivastava LK, Gaudreau P, Quirion R (2000) Dopamine D-5 receptor modulates hippocampal acetylcholine release. Brain Res Mol Brain Res 76:336–340

    Article  PubMed  CAS  Google Scholar 

  • Ingham CA, bolam JP, Smith AD (1998) GABA-immunoreactive boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurones. J Comp Neurol 273:263–282

    Article  Google Scholar 

  • Kalaria RN, Ballard K (1999) Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Relat Disord 13:S115–S123

    Article  Google Scholar 

  • Kemppainen N, Laine M, Laakso MP, Kaasinen V, Någren K, Vahlberg T, Kurki T, Rinne JO (2003) Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer’s disease. Eur J Neurosci 18:149–154

    Article  PubMed  CAS  Google Scholar 

  • Keverne JS, Low WC, Ziabreva I, Court JA, Oakley AE, Kalaria RN (2007) Cholinergic neuronal deficits in CADASIL 38:188–191

    CAS  Google Scholar 

  • Kimura S, Saito H, Minami M, Togashi H, Nakamura N, Nemoto M, Parvez HS (2000) Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology 153:167–178

    Article  PubMed  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar U, Patel SC (2007) Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer’s disease brain. Brain Res 1131:187–196

    Article  PubMed  CAS  Google Scholar 

  • Lacroix LP, Hows ME, Shah AJ, Hagan JJ, Heidbreder CA (2003) Selective antagonism at dopamine D3 receptors enhances monaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex. Neuropsychopharmacology 28:839–849

    PubMed  CAS  Google Scholar 

  • Liepert J, Bar KJ, Meske U, Weiller C (2001) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441

    Article  PubMed  CAS  Google Scholar 

  • Löffler M, Bubl B, Huethe F, Hubbe U, McIntosh JM, Jackisch R, Feuerstein TJ (2006) Dopamine release in human neocortical slices: characterization of inhibitory autoreceptors and of nicotinic acetylcholine receptor-evoked release. Brain Res Bull 68:361–373

    Article  PubMed  Google Scholar 

  • Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24:1–23

    Article  PubMed  CAS  Google Scholar 

  • Manganelli F, Ragno M, Cacchio G, Iodice V, Trojano L, Silvaggio F, Scarcella M, Grazioli M, Santoro L, Perretti A (2008) Motor cortex cholinergic dysfunction in CADASIL: a transcranial magnetic demonstration. Clin Neurophysiol 119:351–355

    Article  PubMed  Google Scholar 

  • Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E (2000) Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurol Scand Suppl 176:34–41

    Article  PubMed  CAS  Google Scholar 

  • Martorana A, Stefani A, Calmieri MG, Esposito Z, Bernardi G, Sancesario G, Pierantozzi M (2008) l-dopa modulates motor cortex excitability in Alzheimer’s disease patients. J Neural Transm 115:1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Martorana A, Mori F, Esposito Z, Kusayanagi H, Monteleone F, Codecà C, Sancesario G, Bernardi G, Koch G (2009) Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients. Neuropsychopharmacology 34:2323–2328

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig-cerebral cortex in vitro. J Physiol 375:169–194

    PubMed  CAS  PubMed Central  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of theNINCDS-ARDRA Work Group under the auspices of Department of Health and Human ServicesTask Forse on Alzheimer’s Disease. Neurology 34:939–944

    Article  PubMed  CAS  Google Scholar 

  • McNeill TH, Koek LL, Haycock JW (1984) The nigrostriatal system and aging. Peptides 5(Suppl 1):263–268

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M, Siddique T, Cohen B (2003) Cholinergic denervation in pure multi-infarct state: observations in CADASIL. Neurology 60:1183–1185

    Article  PubMed  Google Scholar 

  • Millan MJ, Seguin L, Gobert A, Cussac D, Brocco M (2004) The role of dopamine D3 compared with D2 receptors in the control of locomotor activity: a combined behavioural and neurochemical analysis with novel, selective antagonists in rats. Psychopharmacology 174(3):341–357

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Di Cara B, Dekeyne A, Panayi F, De Groote L, Sicard D, Cistarelli L, Billiras R, Gobert A (2007) Selective blockade of dopamine D(3) versus D(2) receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis. J Neurochem 100:1047–1061

    Article  PubMed  CAS  Google Scholar 

  • Müller CM, Singer W (1989) Acetylcholine-induced inhibition in the cat visual cortex is mediated by a GABAergic mechanism. Brain Res 487:335–342

    Article  PubMed  Google Scholar 

  • Murray AM, Weihmueller FB, Marshall JF, Hurtig HI, Gottleib GL, Joyce JN (1995) Damage to dopamine systems differs between Parkinson’s disease and Alzheimer’s disease with parkinsonism. Ann Neurol 37:300–312

    Article  PubMed  CAS  Google Scholar 

  • Nardone R, Bratti A, Tezzon F (2006) Motor cortex inhibitory circuits in dementia with Lewy bodies and in Alzheimer’s disease. J Neural Transm 113:1679–1684

    Article  PubMed  CAS  Google Scholar 

  • Nardone R, Bergmann J, Kronbichler M, Kunz A, Klein S, Caleri F, Tezzon F, Ladurner G, Golaszewski S (2008a) Abnormal short latency afferent inhibition in early Alzheimer’s disease: a transcranial magnetic demonstration. J Neural Transm 115:1557–1562

    Article  PubMed  Google Scholar 

  • Nardone R, Bergmann J, Tezzon F, Ladurner G, Golaszewski S (2008b) Cholinergic dysfunction in subcortical ischaemic vascular dementia: a transcranial magnetic stimulation study. J Neural Transm 115:737–743

    Article  PubMed  CAS  Google Scholar 

  • Pepin JL, Bogacz D, de Pasqua V, Delwaide PJ (1999) Motor cortex inhibition is not impaired in patients with Alzheimer’s disease: evidence from paired transcranial magnetic stimulation. J Neurol Sci 170:119–123

    Article  PubMed  CAS  Google Scholar 

  • Pierantozzi M, Panella M, Palmieri MG, Koch G, Giordano A, Marciani MG, Bernardi G, Stanzione P, Stefani A (2004) Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 15:2410–2418

    Article  Google Scholar 

  • Pizzolato G, Chierichetti F, Fabbri M, Cagnin A, Dam M, Ferlin G, Battistin L (1996) Reduced striatal dopamine receptors in Alzheimer’s disease: single photon emission tomography study with the D2 tracer [123I]-IBZM. Neurology 47:1065–1068

    Article  PubMed  CAS  Google Scholar 

  • Rosen J, Zubenko GS (1991) Emergence of psychosis and depression in the longitudinal evaluation of Alzheimer’s disease. Biol Psychiatry 29:224–232

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Barker T, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C (1994) Non invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application: report of IFCN committee. Electroenceph Clin Neurophysiol 91:79–92

    Article  PubMed  CAS  Google Scholar 

  • Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R (2003) Short and long latency afferent inhibition in Parkinson’s disease. Brain 26:1883–1894

    Article  Google Scholar 

  • Sarter M, Bruno JP, Turchi J (1999) Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders. Ann NY Acad Sci 877:368–382

    Article  PubMed  CAS  Google Scholar 

  • Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257

    Article  PubMed  Google Scholar 

  • Smiley JF, Subramanian M, Mesulam MM (1999) Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience 93:817–829

    Article  PubMed  CAS  Google Scholar 

  • Swartz RH, Sahlas DJ, Black SE (2003) Strategic involvement of cholinergic pathways and executive dysfunction: does location of white matter signal hyperintensities matter? J Stroke Cerebrovasc Dis 12:29–36

    Article  PubMed  Google Scholar 

  • Togashi H, Matsumoto M, Yoshioka M, Hirokami M, Minami M, Saito H (1994) Neurochemical profiles in cerebrospinal fluid of stroke-prone spontaneously hypertensive rats. Neurosci Lett 166:117–120

    Article  PubMed  CAS  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vasquez J, Baghdoyan HA (2002) Muscarinic and GABAA receptors modulate acetylcholine release in feline basal forebrain. Eur J Neurosci 17:249–259

    Article  Google Scholar 

  • Vinters HV, Ellis WG, Zarow C, Zaias BW, Jagust WJ, Mack WJ, Chui HC (2000) Neuropathological substrates of ischemic vascular dementia. J Neuropathol Exp Neurol 59:931–945

    PubMed  CAS  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Nardone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nardone, R., Höller, Y., Thomschewski, A. et al. Dopamine differently modulates central cholinergic circuits in patients with Alzheimer disease and CADASIL. J Neural Transm 121, 1313–1320 (2014). https://doi.org/10.1007/s00702-014-1195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1195-1

Keywords

Navigation