Skip to main content
Log in

Differential adaptation of REM sleep latency, intermediate stage and theta power effects of escitalopram after chronic treatment

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The effects of the widely used selective serotonin reuptake inhibitor (SSRI) antidepressants on sleep have been intensively investigated. However, only a few animal studies examined the effect of escitalopram, the more potent S-enantiomer of citalopram, and conclusions of these studies on sleep architecture are limited due to the experimental design. Here, we investigate the acute (2 and 10 mg/kg, i.p. injected at the beginning of the passive phase) or chronic (10 mg/kg/day for 21 days, by osmotic minipumps) effects of escitalopram on the sleep and quantitative electroencephalogram (EEG) of Wistar rats. The first 3 h of EEG recording was analyzed at the beginning of passive phase, immediately after injections. The acutely injected 2 and 10 mg/kg and the chronically administered 10 mg/kg/day escitalopram caused an approximately three, six and twofold increases in rapid eye movement sleep (REMS) latency, respectively. Acute 2-mg/kg escitalopram reduced REMS, but increased intermediate stage of sleep (IS) while the 10 mg/kg reduced both. We also observed some increase in light slow wave sleep and passive wake parallel with a decrease in deep slow wave sleep and theta power in both active wake and REMS after acute dosing. Following chronic treatment, only the increase in REMS latency remained significant compared to control animals. In conclusion, adaptive changes in the effects of escitalopram, which occur after 3 weeks of treatment, suggest desensitization in the function of 5-HT1A and 5-HT1B receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acsady L, Arabadzisz D, Katona I, Freund TF (1996) Topographic distribution of dorsal and median raphe neurons with hippocampal, septal and dual projection. Acta Biol Hung 47(1–4):9–19

    PubMed  CAS  Google Scholar 

  • Bagdy G (1998) Serotonin, anxiety, and stress hormones. Focus on 5-HT receptor subtypes, species and gender differences. Ann NY Acad Sci 851:357–363

    Article  PubMed  CAS  Google Scholar 

  • Bagdy E, Harsing LG Jr (1995) The role of various calcium and potassium channels in the regulation of somatodendritic serotonin release. Neurochem Res 20(12):1409–1415

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152. doi:S0028390899000106

    Article  PubMed  CAS  Google Scholar 

  • Blier P, De Montigny C, Azzaro AJ (1986) Modification of serotonergic and noradrenergic neurotransmissions by repeated administration of monoamine oxidase inhibitors: electrophysiological studies in the rat central nervous system. J Pharmacol Exp Ther 237(3):987–994

    PubMed  CAS  Google Scholar 

  • Chaput Y, Blier P, de Montigny C (1986) In vivo electrophysiological evidence for the regulatory role of autoreceptors on serotonergic terminals. J Neurosci 6(10):2796–2801

    PubMed  CAS  Google Scholar 

  • Dumont GJ, de Visser SJ, Cohen AF, van Gerven JM (2005) Biomarkers for the effects of selective serotonin reuptake inhibitors (SSRIs) in healthy subjects. Br J Clin Pharmacol 59(5):495–510. doi:BCP234210.1111/j.1365-2125.2005.02342.x

    Article  PubMed  CAS  Google Scholar 

  • Feige B, Voderholzer U, Riemann D, Dittmann R, Hohagen F, Berger M (2002) Fluoxetine and sleep EEG: effects of a single dose, subchronic treatment, and discontinuation in healthy subjects. Neuropsychopharmacology 26(2):246–258. doi:S0893133X0100314110.1016/S0893-133X(01)00314-1

    Article  PubMed  CAS  Google Scholar 

  • Felton TM, Kang TB, Hjorth S, Auerbach SB (2003) Effects of selective serotonin and serotonin/noradrenaline reuptake inhibitors on extracellular serotonin in rat diencephalon and frontal cortex. Naunyn Schmiedebergs Arch Pharmacol 367(3):297–305. doi:10.1007/s00210-002-0688-x

    Article  PubMed  CAS  Google Scholar 

  • Filakovszky J, Gerber K, Bagdy G (1999) A serotonin-1A receptor agonist and an N-methyl-d-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett 261(1–2):89–92. doi:S0304-3940(99)00015-4

    Article  PubMed  CAS  Google Scholar 

  • Gauthier P, Arnaud C, Stutzmann JM, Gottesmann C (1997) Influence of zopiclone, a new generation hypnotic, on the intermediate stage and paradoxical sleep in the rat. Psychopharmacology (Berl) 130(2):139–143

    Article  CAS  Google Scholar 

  • Gillin JC, Jernajczyk W, Valladares-Neto DC, Golshan S, Lardon M, Stahl SM (1994) Inhibition of REM sleep by ipsapirone, a 5HT1A agonist, in normal volunteers. Psychopharmacology (Berl) 116(4):433–436

    Article  CAS  Google Scholar 

  • Gottesmann C, Gandolfo G, Arnaud C, Gauthier P (1998) The intermediate stage and paradoxical sleep in the rat: influence of three generations of hypnotics. Eur J Neurosci 10(2):409–414

    Article  PubMed  CAS  Google Scholar 

  • Graf M, Jakus R, Kantor S, Levay G, Bagdy G (2004) Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359(1–2):45–48. doi:S030439400400166110.1016/j.neulet.2004.01.072

    Article  PubMed  CAS  Google Scholar 

  • Ivarsson M, Paterson LM, Hutson PH (2005) Antidepressants and REM sleep in Wistar-Kyoto and Sprague-Dawley rats. Eur J Pharmacol 522(1–3):63–71. doi:S0014-2999(05)00852-610.1016/j.ejphar.2005.08.050

    Article  PubMed  CAS  Google Scholar 

  • Kantor S, Jakus R, Bodizs R, Halasz P, Bagdy G (2002) Acute and long-term effects of the 5-HT2 receptor antagonist ritanserin on EEG power spectra, motor activity, and sleep: changes at the light-dark phase shift. Brain Res 943(1):105–111. doi:S0006899302026987

    Article  PubMed  CAS  Google Scholar 

  • Kantor S, Jakus R, Balogh B, Benko A, Bagdy G (2004) Increased wakefulness, motor activity and decreased theta activity after blockade of the 5-HT2B receptor by the subtype-selective antagonist SB-215505. Br J Pharmacol 142(8):1332–1342. doi:sj.bjp.070588710.1038/sj.bjp.0705887

    Article  PubMed  CAS  Google Scholar 

  • Kantor S, Jakus R, Molnar E, Gyongyosi N, Toth A, Detari L, Bagdy G (2005) Despite similar anxiolytic potential, the 5-hydroxytryptamine 2C receptor antagonist SB-242084 [6-chloro-5-methyl-1-[2-(2-methylpyrid-3-yloxy)-pyrid-5-yl carbamoyl] indoline] and chlordiazepoxide produced differential effects on electroencephalogram power spectra. J Pharmacol Exp Ther 315(2):921–930. doi:jpet.105.08641310.1124/jpet.105.086413

    Article  PubMed  CAS  Google Scholar 

  • Kitka TBG (2008) Effect of 5-HT2A/2B/2C receptor agonists and antagonists on sleep and waking in laboratory animals and humans. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ (eds) Serotonin and sleep: molecular functional and clinical aspects. Birkhäuser Verlag, Switzerland, pp 387–414

    Chapter  Google Scholar 

  • Kitka T, Katai Z, Pap D, Molnar E, Adori C, Bagdy G (2009) Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound. Behav Brain Res 205(2):482–487. doi:S0166-4328(09)00471-910.1016/j.bbr.2009.08.004

    Article  PubMed  Google Scholar 

  • Lader M, Andersen HF, Baekdal T (2005) The effect of escitalopram on sleep problems in depressed patients. Hum Psychopharmacol 20(5):349–354. doi:10.1002/hup.694

    Article  PubMed  CAS  Google Scholar 

  • Landolt HP, de Boer LP (2001) Effect of chronic phenelzine treatment on REM sleep: report of three patients. Neuropsychopharmacology 25(5 Suppl):S63–S67. doi:S0893133X0100321910.1016/S0893-133X(01)00321-9

    Article  PubMed  CAS  Google Scholar 

  • Maudhuit C, Jolas T, Lainey E, Hamon M, Adrien J (1994) Effects of acute and chronic treatment with amoxapine and cericlamine on the sleep-wakefulness cycle in the rat. Neuropharmacology 33(8):1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Monaca C, Boutrel B, Hen R, Hamon M, Adrien J (2003) 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice. Neuropsychopharmacology 28(5):850–856. doi:10.1038/sj.npp.13001091300109

    PubMed  CAS  Google Scholar 

  • Neckelmann D, Bjorvatn B, Bjorkum AA, Ursin R (1996) Citalopram: differential sleep/wake and EEG power spectrum effects after single dose and chronic administration. Behav Brain Res 79(1–2):183–192

    Article  PubMed  CAS  Google Scholar 

  • Oswald I, Adam K (1986) Effects of paroxetine on human sleep. Br J Clin Pharmacol 22(1):97–99

    PubMed  CAS  Google Scholar 

  • Owens MJ, Knight DL, Nemeroff CB (2001) Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 50(5):345–350. doi:S0006-3223(01)01145-3

    Article  PubMed  CAS  Google Scholar 

  • Popa D, Lena C, Alexandre C, Adrien J (2008) Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior. J Neurosci 28(14):3546–3554. doi:10.1523/jneurosci.4006-07.2008

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Brennum LT, Storustovu S, Kreilgard M, Mork A (2007) Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol Biochem Behav 86(3):468–476. doi:S0091-3057(07)00022-610.1016/j.pbb.2007.01.006

    Article  PubMed  CAS  Google Scholar 

  • Sharpley AL, Williamson DJ, Attenburrow ME, Pearson G, Sargent P, Cowen PJ (1996) The effects of paroxetine and nefazodone on sleep: a placebo controlled trial. Psychopharmacology (Berl) 126(1):50–54

    Article  CAS  Google Scholar 

  • Sommerfelt L (1990) Chronic zimeldine administration to cats: sustained increase of serotonergic effect as measured with sleep parameters. Pharmacol Toxicol 66(2):128–132

    Article  PubMed  CAS  Google Scholar 

  • Steiger A, Kimura M (2010) Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 44(4):242–252. doi:S0022-3956(09)00189-710.1016/j.jpsychires.2009.08.013

    Article  PubMed  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340(2–3):249–258. doi:S0014-2999(97)01393-9

    Article  PubMed  CAS  Google Scholar 

  • Tissier MH, Lainey E, Fattaccini CM, Hamon M, Adrien J (1993) Effects of ipsapirone, a 5-HT1A agonist, on sleep/wakefulness cycles: probable post-synaptic action. J Sleep Res 2(2):103–109. doi:jsr002002103

    Article  PubMed  Google Scholar 

  • van Bemmel AL, van den Hoofdakker RH, Beersma DG, Bouhuys AL (1993) Changes in sleep polygraphic variables and clinical state in depressed patients during treatment with citalopram. Psychopharmacology (Berl) 113(2):225–230

    Article  Google Scholar 

  • Wade A, Friis Andersen H (2006) The onset of effect for escitalopram and its relevance for the clinical management of depression. Curr Med Res Opin 22(11):2101–2110. doi:10.1185/030079906X148319

    Article  PubMed  CAS  Google Scholar 

  • Waugh J, Goa KL (2003) Escitalopram: a review of its use in the management of major depressive and anxiety disorders. CNS Drugs 17(5):343–362. doi:1754

    Article  PubMed  CAS  Google Scholar 

  • Wilson S, Argyropoulos S (2005) Antidepressants and sleep: a qualitative review of the literature. Drugs 65(7):927–947

    Article  PubMed  CAS  Google Scholar 

  • Wilson SJ, Bailey JE, Rich AS, Adrover M, Potokar J, Nutt DJ (2004) Using sleep to evaluate comparative serotonergic effects of paroxetine and citalopram. Eur Neuropsychopharmacol 14(5):367–372. doi:S0924977X0300221910.1016/j.euroneuro.2003.11.004

    Article  PubMed  CAS  Google Scholar 

  • Winokur A, Gary KA, Rodner S, Rae-Red C, Fernando AT, Szuba MP (2001) Depression, sleep physiology, and antidepressant drugs. Depress Anxiety 14(1):19–28. doi:10.1002/da.1043

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 6th Framework Program of the European Community LSHM-CT-2004-503474, Hungarian Research Fund Grant T020500, Ministry of Welfare Research Grant 460/2006, TAMOP-2.2.1. B-09/1/KMR-2010-0001(G.B.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Bagdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vas, S., Kátai, Z., Kostyalik, D. et al. Differential adaptation of REM sleep latency, intermediate stage and theta power effects of escitalopram after chronic treatment. J Neural Transm 120, 169–176 (2013). https://doi.org/10.1007/s00702-012-0847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0847-2

Keywords

Navigation