Skip to main content

Advertisement

Log in

Transient reduction of spontaneous neuronal network activity by sublethal amyloid β (1–42) peptide concentrations

  • Dementias - Short Communication
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Soluble amyloid β1–42 (Aβ1–42) peptide has recently been assigned a key role in early Alzheimer’s disease (AD) pathophysiology accounting for synaptic dysfunction before amyloid plaque formation and neurodegeneration can occur. Following sublethal Aβ1–42 administration, we observed an acute but transient reduction of the spike and burst rate of spontaneously active cortical networks cultured on microelectrode arrays. This simple experimental system appears suitable for future long-term pharmacological and genetic studies of Aβ1–42 signaling, thus providing a valuable new tool in AD research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  CAS  Google Scholar 

  • Chen QS, Kagan BL, Hirakura Y, Xie CW (2000) Impairment of hippocampal long-term potentiation by Alzheimer amyloid beta-peptides. J Neurosci Res 60:65–72

    Article  PubMed  CAS  Google Scholar 

  • Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S (2006) Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res 1093:41–53

    Article  PubMed  CAS  Google Scholar 

  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    Article  PubMed  CAS  Google Scholar 

  • Farhangrazi ZS, Ying H, Bu G, Dugan LL, Fagan AM, Choi DW, Holtzman DM (1997) High density lipoprotein decreases beta-amyloid toxicity in cortical cell culture. Neuroreport 8:1127–1130

    Article  PubMed  CAS  Google Scholar 

  • Görtz P, Hoinkes A, Fleischer W, Otto F, Schwahn B, Wendel U, Siebler M (2004) Implications for hyperhomocysteinemia: not homocysteine but its oxidized forms strongly inhibit neuronal network activity. J Neurol Sci 218:109–114

    Article  PubMed  Google Scholar 

  • Gramowski A, Jugelt K, Weiss DG, Gross GW (2004) Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. Eur J Neurosci 19:2815–2825

    Article  PubMed  Google Scholar 

  • Gramowski A, Jugelt K, Stuwe S, Schulze R, McGregor GP, Wartenberg-Demand A, Loock J, Schroder O, Weiss DG (2006) Functional screening of traditional antidepressants with primary cortical neuronal networks grown on multielectrode neurochips. Eur J Neurosci 24:455–465

    Article  PubMed  Google Scholar 

  • Gross GW, Rhoades BK, Azzazy HM, Wu MC (1995) The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron 10:553–567

    Article  PubMed  CAS  Google Scholar 

  • Keefer EW, Gramowski A, Gross GW (2001) NMDA receptor-dependent periodic oscillations in cultured spinal cord networks. J Neurophysiol 86:3030–3042

    PubMed  CAS  Google Scholar 

  • Lange-Asschenfeldt C, Lohmann P, Riepe MW (2007) Spatial performance in a complex maze is associated with persistent long-term potentiation enhancement in mouse hippocampal slices at early training stages. Neuroscience 147:318–324

    Article  PubMed  CAS  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  Google Scholar 

  • Linke S, Goertz P, Baader SL, Gieselmann V, Siebler M, Junghans U, Kappler J (2006) Aldolase C/zebrin II is released to the extracellular space after stroke and inhibits the network activity of cortical neurons. Neurochem Res 31:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    PubMed  CAS  Google Scholar 

  • Masters CL, Beyreuther K (2006) Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the Abeta amyloid pathway. Brain 129:2823–2839

    Article  PubMed  Google Scholar 

  • Moolman DL, Vitolo OV, Vonsattel JP, Shelanski ML (2004) Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33:377–387

    Article  PubMed  CAS  Google Scholar 

  • Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    Article  PubMed  CAS  Google Scholar 

  • Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid beta oligomers (A beta (1–42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797

    Article  PubMed  CAS  Google Scholar 

  • Otto F, Görtz P, Fleischer W, Siebler M (2003) Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays. J Neurosci Methods 128:173–181

    Article  PubMed  Google Scholar 

  • Otto F, Kieseier BC, Görtz P, Hartung HP, Siebler M (2005) The pentapeptide QYNAD does not inhibit neuronal network activity. Can J Neurol Sci 32:344–348

    PubMed  CAS  Google Scholar 

  • Pettit DL, Shao Z, Yakel JL (2001) Beta-amyloid (1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci 21:RC120

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  • Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai XD, McKay DM, Tintner R, Frangione B (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258:126–129

    Article  PubMed  CAS  Google Scholar 

  • Sun MK, Alkon DL (2002) Impairment of hippocampal CA1 heterosynaptic transformation and spatial memory by beta-amyloid (25–35). J Neurophysiol 87:2441–2449

    PubMed  CAS  Google Scholar 

  • Venkitaramani DV, Chin J, Netzer WJ, Gouras GK, Lesne S, Malinow R, Lombroso PJ (2007) Beta-amyloid modulation of synaptic transmission and plasticity. J Neurosci 27:11832–11837

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  • Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Rowan MJ, Anwyl R (2004) Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J Neurosci 24:6049–6056

    Article  PubMed  CAS  Google Scholar 

  • Xiang G, Pan L, Huang L, Yu Z, Song X, Cheng J, Xing W, Zhou Y (2007) Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro. Biosens Bioelectron 22:2478–2484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from the Stiftung für Altersforschung (Age Research Foundation) of the Heinrich-Heine-Universität Düsseldorf (C.L.-A. and P.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lange-Asschenfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Görtz, P., Opatz, J., Siebler, M. et al. Transient reduction of spontaneous neuronal network activity by sublethal amyloid β (1–42) peptide concentrations. J Neural Transm 116, 351–355 (2009). https://doi.org/10.1007/s00702-009-0188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0188-y

Keywords

Navigation