Skip to main content
Log in

Genetic association analysis of tagging SNPs in alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes (CHRNA4 and CHRNB2) with schizophrenia in the Japanese population

  • Biological Psychiatry - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Several lines of evidence suggest that nicotinic cholinergic dysfunction may contribute to the cognitive impairments in schizophrenia. The majority of high affinity nicotine binding sites in the human brain have been implicated in heteropentameric alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptors; therefore, these two neuronal nicotinic acetylcholine receptors genes (CHRNA4 and CHRNB2) are considered to be attractive candidate genes for the pathophysiology of schizophrenia. To represent these two genes in a gene-wide manner, we first evaluated the linkage disequilibrium structure using our own control samples. Thirteen SNPs (7 SNPs for CHRNA4 and 5 SNPs for CHRNB2) were selected as tagging SNPs. Using these tagging SNPs, we then conducted genetic association analysis of case-control samples (738 schizophrenia and 753 controls) in the Japanese population. No significant association was detected in the allele/genotype-wise or haplotype-wise analysis. Our results suggest that CHRNA4 and CHRNB2 do not play a major role in Japanese schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  • Bonilha L, Molnar C, Horner MD, Anderson B, Forster L, George MS, Nahas Z (2008) Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophr Res 101(1–3):142–151

    Article  PubMed  Google Scholar 

  • Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M (1998) The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 55(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Voineskos S, Wong G, Kennedy JL (2006) Genetic interaction between alpha4 and beta2 subunits of high affinity nicotinic receptor: analysis in schizophrenia. Exp Brain Res 174(2):292–296

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Su J, Taylor L, Wilcox M, Van Eerdewegh P, Tsuang MT (2004) A novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families. Hum Hered 57(2):59–68

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Niu T, Xing H, Xu X, Chen C, Peng S, Wang L, Laird N, Xu X (2004) A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am J Hum Genet 75(1):112–121

    Article  PubMed  CAS  Google Scholar 

  • Flores CM, Davila-Garcia MI, Ulrich YM, Kellar KJ (1997) Differential regulation of neuronal nicotinic receptor binding sites following chronic nicotine administration. J Neurochem 69(5):2216–2219

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38(1):22–33

    Article  PubMed  CAS  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153(3):321–330

    PubMed  CAS  Google Scholar 

  • Greenbaum L, Kanyas K, Karni O, Merbl Y, Olender T, Horowitz A, Yakir A, Lancet D, Ben-Asher E, Lerer B (2006) Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes. Mol Psychiatry 11(3): 312–322, 223

    Google Scholar 

  • Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T (2002) Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190, 562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet 47(11):605–610

    Article  PubMed  CAS  Google Scholar 

  • Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19(3):376–382

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa M, Tanaka T, Hashimoto Y, Kuroda M, Takagi T, Nakamura Y (2002) JSNP: a database of common gene variations in the Japanese population. Nucleic Acids Res 30(1):158–162

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143(8):993–997

    PubMed  CAS  Google Scholar 

  • Ikeda M, Takahashi N, Saito S, Aleksic B, Watanabe Y, Nunokawa A, Yamanouchi Y, Kitajima T, Kinoshita Y, Kishi T, Kawashima K, Hashimoto R, Ujike H, Inada T, Someya T, Takeda M, Ozaki N, Iwata N (2008) Failure to replicate the association between NRG1 and schizophrenia using Japanese large sample. Schizophr Res 101(1–3):1–8

    Article  PubMed  Google Scholar 

  • Kishi T, Ikeda M, Kitajima T, Yamanouchi Y, Kinoshita Y, Kawashima K, Inada T, Harano M, Komiyama T, Hori T, Yamada M, Iyo M, Sora I, Sekine Y, Ozaki N, Ujike H, Iwata I (2008) No association between alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes and methamphetamine use disorder in the Japanese population. Ann N Y Acad Sci (in press)

  • Kumari V, Postma P (2005) Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 29(6):1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW, Fonck C, Nashmi R, Kofuji P, Dang H, Shi W, Fidan M, Khakh BS, Chen Z, Bowers BJ, Boulter J, Wehner JM, Lester HA (2001) Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci USA 98(5):2786–2791

    Article  PubMed  CAS  Google Scholar 

  • Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20(6):687–702

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 138(3–4):217–230

    Article  CAS  Google Scholar 

  • Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98(1):23–31

    Article  PubMed  Google Scholar 

  • Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V, Duenes AS, Crews KM, Elston RC (2005) Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 14(9):1211–1219

    Article  PubMed  CAS  Google Scholar 

  • Maes HH, Sullivan PF, Bulik CM, Neale MC, Prescott CA, Eaves LJ, Kendler KS (2004) A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence. Psychol Med 34(7):1251–1261

    Article  PubMed  Google Scholar 

  • Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, Evrard A, Cazala P, Cormier A, Mameli-Engvall M, Dufour N, Cloez-Tayarani I, Bemelmans AP, Mallet J, Gardier AM, David V, Faure P, Granon S, Changeux JP (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436(7047):103–107

    Article  PubMed  CAS  Google Scholar 

  • Neale BM, Sham PC (2004) The future of association studies: gene-based analysis and replication. Am J Hum Genet 75(3):353–362

    Article  PubMed  CAS  Google Scholar 

  • Ohashi J, Yamamoto S, Tsuchiya N, Hatta Y, Komata T, Matsushita M, Tokunaga K (2001) Comparison of statistical power between 2 * 2 allele frequency and allele positivity tables in case-control studies of complex disease genes. Ann Hum Genet 65(Pt 2):197–206

    Article  PubMed  CAS  Google Scholar 

  • Ross SA, Wong JY, Clifford JJ, Kinsella A, Massalas JS, Horne MK, Scheffer IE, Kola I, Waddington JL, Berkovic SF, Drago J (2000) Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J Neurosci 20(17):6431–6441

    PubMed  CAS  Google Scholar 

  • Swan GE, Carmelli D, Rosenman RH, Fabsitz RR, Christian JC (1990) Smoking and alcohol consumption in adult male twins: genetic heritability and shared environmental influences. J Subst Abuse 2(1):39–50

    Article  PubMed  CAS  Google Scholar 

  • Voineskos S, De Luca V, Mensah A, Vincent JB, Potapova N, Kennedy JL (2007) Association of alpha4beta2 nicotinic receptor and heavy smoking in schizophrenia. J Psychiatry Neurosci 32(6):412–416

    PubMed  Google Scholar 

  • Winterer G, Musso F, Konrad A, Vucurevic G, Stoeter P, Sander T, Gallinat J (2007) Association of attentional network function with exon 5 variations of the CHRNA4 gene. Hum Mol Genet 16(18):2165–2174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms M. Miyata and Ms S. Nakaguchi for their technical support. This work was supported in part by research grants from the Ministry of Education, Culture, Sports, Science and Technology, and the Ministry of Health, Labor and Welfare, and the Japan Health Sciences Foundation (Research on Health Sciences focusing on Drug Innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Kishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishi, T., Ikeda, M., Kitajima, T. et al. Genetic association analysis of tagging SNPs in alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes (CHRNA4 and CHRNB2) with schizophrenia in the Japanese population. J Neural Transm 115, 1457–1461 (2008). https://doi.org/10.1007/s00702-008-0114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0114-8

Keywords

Navigation