Skip to main content
Log in

miRNA-26a expression influences the therapy response to carmustine wafer implantation in patients with glioblastoma multiforme

  • Original Article - Tumor - Glioma
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Glioblastoma multiforme is the most frequent malignant brain tumor in adults being marked with a very poor prognosis. Therapy concept implies concomitant radio-chemotherapy and facultative implantation of carmustine-eluted wafer. Current literature suggests microRNA 26a expression in glioblastoma to interact with alkylating chemotherapy. Subsequently, the aim of this study was to investigate the correlation of miRNA-26a expression and carmustine wafer implantation and its potential usefulness as a predictive marker for therapy response.

Methods

In total, 229 patients with glioblastoma multiforme were included into the final analysis. Of them, 80 cases were recruited from the Saarland University Medical Center for a retrospective matched-pair analysis stratified after therapy regime: One group (carmustine wafer group; n=40) received concomitant radio-chemotherapy with carmustine wafer implantation. The other group (control group; n=40) only received concomitant radio-chemotherapy. The results were confirmed by comparing them with an independent dataset of 149 patients from the TCGA database. All tumor specimens were evaluated for miRNA-26a expression, MGMT promoter methylation, and IDH1 R132H mutation status, and the results were correlated with the clinical data.

Results

Twenty-three patients in the carmustine wafer group showed low expression of miRNA-26a, while 17 patients showed a high expression. In the control group, 28 patients showed low expression, while 12 patients showed a high expression. The patients with high miRNA-26a expression in the carmustine wafer group were characterized by a significantly longer overall (hazard ratio [HR] 2.750 [95% CI 1.352–5.593]; p=0.004) and progression-free survival (HR 3.091 [95% CI 1.436–6.657]; p=0.003) than patients with low miRNA-26a expression. The 17 patients in the carmustine wafer group with high miRNA-26a expression showed a significantly longer progression-free survival (p=0.013) and overall survival (p=0.007) compared with the control group. There were no such correlations identified within the control group. TCGA datasets supported these findings.

Conclusions

MiRNA-26a expression turned out to be a promising predictor of therapy response and clinical outcome in glioblastoma patients treated with carmustine wafer implantation. For evaluation of the role of miRNA-26a in a combined therapy setting, further studies are needed in order to translate general findings to the patient’s individual situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CI:

Confidence interval

FC:

Fold change

GBM:

Glioblastoma multiforme

GTR:

Gross total resection

HR:

Hazard ratio

KPS:

Karnofsky Performance Score

MGMT:

O6-Methylguanine-DNA methyltransferase

miRNA:

MicroRNA

MRI:

Magnetic resonance imaging

MS-PCR:

Methylation-specific polymerase chain reaction

OS:

Overall survival

PFS:

Progression-free survival

qRT-PCR:

Quantitative reverse-transcription polymerase chain reaction

STR:

Subtotal resection

TCGA:

The Cancer Genome Atlas

TMZ:

Temozolomide

References

  1. Abd-El-Barr MM, Chiocca EA (2014) How much is enough? The question of extent of resection in glioblastoma multiforme. World Neurosurg 82(1–2):e109–e110

    PubMed  Google Scholar 

  2. Ahir BK, Ozer H, Engelhard HH, Lakka SS (2017) MicroRNAs in glioblastoma pathogenesis and therapy: a comprehensive review. Crit Rev Oncol Hematol 120:22–33

    PubMed  Google Scholar 

  3. Bäcklund LM, Nilsson BR, Goike HM, Schmidt EE, Liu L, Ichimura K, Collins VP (2003) Short postoperative survival for glioblastoma patients with a dysfunctional Rb1 pathway in combination with no wild-type PTEN. Clin Cancer Res Off J Am Assoc Cancer Res 9(11):4151–4158

    Google Scholar 

  4. Bäcklund LM, Nilsson BR, Liu L, Ichimura K, Collins VP (2005) Mutations in Rb1 pathway-related genes are associated with poor prognosis in anaplastic astrocytomas. Br J Cancer 93(1):124–130

    PubMed  PubMed Central  Google Scholar 

  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  6. Busato F, Dejeux E, El Abdalaoui H, Gut IG, Tost J (2018) Quantitative DNA methylation analysis at single-nucleotide resolution by pyrosequencing®. Methods Mol Biol Clifton NJ 1708:427–445

    CAS  Google Scholar 

  7. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Google Scholar 

  8. Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol Zurich Switz 20(1):245–254

    CAS  Google Scholar 

  9. Chaichana KL, Cabrera-Aldana EE, Jusue-Torres I, Wijesekera O, Olivi A, Rahman M, Quinones-Hinojosa A (2014) When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurg 82(1–2):e257–e265

    PubMed  Google Scholar 

  10. Chen C-Z (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353(17):1768–1771

    CAS  PubMed  Google Scholar 

  11. Colaprico A, Silva TC, Olsen C et al (2016) TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44(8):e71

    PubMed  Google Scholar 

  12. Curran WJ, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, Chang CH, Rotman M, Asbell SO, Krisch RE (1993) Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 85(9):704–710

    PubMed  Google Scholar 

  13. De Bonis P, Anile C, Pompucci A, Fiorentino A, Balducci M, Chiesa S, Maira G, Mangiola A (2012) Safety and efficacy of Gliadel wafers for newly diagnosed and recurrent glioblastoma. Acta Neurochir 154(8):1371–1378

    PubMed  Google Scholar 

  14. Felsberg J, Rapp M, Loeser S, Fimmers R, Stummer W, Goeppert M, Steiger H-J, Friedensdorf B, Reifenberger G, Sabel MC (2009) Prognostic significance of molecular markers and extent of resection in primary glioblastoma patients. Clin Cancer Res Off J Am Assoc Cancer Res 15(21):6683–6693

    CAS  Google Scholar 

  15. Ge X, Pan M-H, Wang L, Li W, Jiang C, He J, Abouzid K, Liu L-Z, Shi Z, Jiang B-H (2018) Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis 9(11):1128

    PubMed  PubMed Central  Google Scholar 

  16. Gil J, Peters G (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7(9):667–677

    CAS  PubMed  Google Scholar 

  17. Goldhoff P, Clarke J, Smirnov I, Berger MS, Prados MD, James CD, Perry A, Phillips JJ (2012) Clinical stratification of glioblastoma based on alterations in retinoblastoma tumor suppressor protein (RB1) and association with the proneural subtype. J Neuropathol Exp Neurol 71(1):83–89

    CAS  PubMed  Google Scholar 

  18. Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, Vogelbaum MA (2014) Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 121(5):1115–1123

    PubMed  Google Scholar 

  19. Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, Fisher J, NABTT CNS Consortium (2010) Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res Off J Am Assoc Cancer Res 16(8):2443–2449

    CAS  Google Scholar 

  20. Halani SH, Babu R, Adamson DC (2017) Management of glioblastoma multiforme in the elderly: a review of the literature. World Neurosurg. https://doi.org/10.1016/j.wneu.2017.04.153

    PubMed  Google Scholar 

  21. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol (Berl) 118(4):469–474

    Google Scholar 

  22. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    CAS  PubMed  Google Scholar 

  23. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol Off J Am Soc Clin Oncol 26(25):4189–4199

    CAS  Google Scholar 

  24. Henriksen M, Johnsen KB, Olesen P, Pilgaard L, Duroux M (2014) MicroRNA expression signatures and their correlation with clinicopathological features in glioblastoma multiforme. NeuroMolecular Med 16(3):565–577

    CAS  PubMed  Google Scholar 

  25. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93(18):9821–9826

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Holt DE, Bernard ME, Quan K, Clump DA, Engh JA, Burton SA, Heron DE (2016) Salvage stereotactic radiosurgery for recurrent glioblastoma multiforme with prior radiation therapy. J Cancer Res Ther 12(4):1243–1248

    CAS  PubMed  Google Scholar 

  27. Huse JT, Brennan C, Hambardzumyan D et al (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23(11):1327–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Limentani SA, Asher A, Heafner M, Kim JW, Fraser R (2005) A phase I trial of surgery, Gliadel wafer implantation, and immediate postoperative carboplatin in combination with radiation therapy for primary anaplastic astrocytoma or glioblastoma multiforme. J Neuro-Oncol 72(3):241–244

    CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods San Diego Calif 25(4):402–408

    CAS  Google Scholar 

  30. López-Urrutia E, Coronel-Hernández J, García-Castillo V et al (2017) MiR-26a downregulates retinoblastoma in colorectal cancer. Tumour Biol J Int Soc Oncodevelopmental Biol Med 39(4):1010428317695945

    Google Scholar 

  31. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl) 131(6):803–820

    Google Scholar 

  32. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K, Meyer HE, Reifenberger G (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol Zurich Switz 20(3):539–550

    CAS  Google Scholar 

  33. Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Investig J Tech Methods Pathol 81(1):77–82

    CAS  Google Scholar 

  34. Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B (2017) Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer 1868(1):29–39

    CAS  PubMed  Google Scholar 

  35. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncol 15(Suppl 2):ii1–i56

    PubMed  PubMed Central  Google Scholar 

  36. Pallud J, Audureau E, Noel G et al (2015) Long-term results of carmustine wafer implantation for newly diagnosed glioblastomas: a controlled propensity-matched analysis of a French multicenter cohort. Neuro-Oncol 17(12):1609–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Parker NR, Correia N, Crossley B, Buckland ME, Howell VM, Wheeler HR (2013) Correlation of microRNA 132 up-regulation with an unfavorable clinical outcome in patients with primary glioblastoma multiforme treated with radiotherapy plus concomitant and adjuvant temozolomide chemotherapy. Transl Oncol 6(6):742–748

    PubMed  PubMed Central  Google Scholar 

  38. Sabel M, Giese A (2008) Safety profile of carmustine wafers in malignant glioma: a review of controlled trials and a decade of clinical experience. Curr Med Res Opin 24(11):3239–3257

    CAS  PubMed  Google Scholar 

  39. Sawaya R (1999) Extent of resection in malignant gliomas: a critical summary. J Neuro-Oncol 42(3):303–305

    CAS  Google Scholar 

  40. Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE (2000) Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res 60(5):1211–1216

    CAS  PubMed  Google Scholar 

  41. Sippl C, Ketter R, Bohr L, Kim YJ, List M, Oertel J, Urbschat S (2018) MiRNA-181d expression significantly affects treatment responses to carmustine wafer implantation. Neurosurgery. https://doi.org/10.1093/neuros/nyy214

    Google Scholar 

  42. Sippl C, Urbschat S, Kim YJ, Senger S, Oertel J, Ketter R (2018) Promoter methylation of RB1, P15, P16, and MGMT and their impact on the clinical course of pilocytic astrocytomas. Oncol Lett 15(2):1600–1606

    PubMed  Google Scholar 

  43. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet Lond Engl 359(9311):1011–1018

    CAS  Google Scholar 

  44. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  Google Scholar 

  45. Takeuchi K, Hoshino K (1977) Statistical analysis of factors affecting survival after glioblastoma multiforme. Acta Neurochir 37(1–2):57–73

    CAS  PubMed  Google Scholar 

  46. Weber EL, Goebel EA (2005) Cerebral edema associated with Gliadel wafers: two case studies. Neuro-Oncol 7(1):84–89

    PubMed  PubMed Central  Google Scholar 

  47. Wemmert S, Bettscheider M, Alt S, Ketter R, Kammers K, Feiden W, Steudel W-I, Rahnenführer J, Urbschat S (2009) p15 promoter methylation—a novel prognostic marker in glioblastoma patients. Int J Oncol 34(6):1743–1748

    CAS  PubMed  Google Scholar 

  48. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jääskeläinen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncol 5(2):79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshioka M, Matsutani T, Hara A, Hirono S, Hiwasa T, Takiguchi M, Iwadate Y (2018) Real-time methylation-specific PCR for the evaluation of methylation status of MGMT gene in glioblastoma. Oncotarget 9(45):27728–27735

    PubMed  PubMed Central  Google Scholar 

  51. Yu N, Yang Y, Li X, Zhang M, Huang J, Wang X, Long X (2016) MiR-26a inhibits proliferation and migration of HaCaT keratinocytes through regulating PTEN expression. Gene 594(1):117–124

    CAS  PubMed  Google Scholar 

  52. Zhang Y-F, Zhang A-R, Zhang B-C, Rao Z-G, Gao J-F, Lv M-H, Wu Y-Y, Wang S-M, Wang R-Q, Fang D-C (2013) MiR-26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1-E2F1 signaling pathway. Mol Biol Rep 40(2):1711–1720

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Lisa Senger for her editorial support and Sigrid Welsch for their technical assistance in miRNA and methylation analysis.

Funding

This study was financed by Archimedes Pharma (L204150209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Sippl.

Ethics declarations

All procedures performed in this study were in accordance with the ethical standards of the 1964 Helsinki declaration. This article does not contain any studies with animals performed by any of the authors.

Ethics approval and consent to participate

This study was approved by the local German ethical board (Ethikkommission der Ärztekammer des Saarlandes, Saarbrücken, Germany).

Consent for publication

Written informed consent was obtained from all patients (General Medical Council of the State of Saarland, NO 93/16).

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Tumor - Glioma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sippl, C., Ketter, R., Braun, L. et al. miRNA-26a expression influences the therapy response to carmustine wafer implantation in patients with glioblastoma multiforme. Acta Neurochir 161, 2299–2309 (2019). https://doi.org/10.1007/s00701-019-04051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-019-04051-8

Keywords

Navigation