Skip to main content
Log in

Evaluation of a new large animal model for controlled intracranial pressure changes induced by capnoperitoneum

  • Experimental research - Brain Injury
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

A standardized large animal model for controlled ICP manipulation within a relevant range and repetitive ICP measurements is missing. We sought to develop such a model on the base of controlled IPP changes induced by capnoperitoneum.

Methods

We utilized six female pigs (mean body weight 59.5 ± 18.4 kg) for experiments. A ventricular catheter connected with a burr hole reservoir was implanted. ICP was measured directly as cm H2O within a riser tube after percutaneous cannulation of the reservoir. A noninvasive intraperitoneal pressure (IPP) measurement was established (intravesical). Animals were placed in lateral position and a capnoperitoneum was induced. Measurements of ICP, IPP, MAP and respiratory parameters were performed at baseline IPP and after CO2 insufflation to IPP levels of 20 and 30 mmHg.

Results

Baseline IPP in lateral position referenced to median line was 9.8 (±2) mm Hg, while corresponding ICP was 10 (±2.2) mm Hg. After IPP elevation to 20 mmHg, ICP increased to 18.8 (±1.9) mm Hg. At 30 mmHg IPP, ICP increased to 22.8 (±2.8) mm Hg. Except peak airway pressure, all other parameters were kept constantly. Mean ICP variation in the individual subject was 13.4 (±2.5) mm Hg, while a ICP range from minimum 9 to maximum 31 mmHg was documented.

Conclusions

We report a large animal model that allows (1) repeated measurement of the ICP and (2) manipulation of the ICP within a large pressure range by controlled IPP changes due to capnoperitoneum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Al-Tamimi YZ, Helmy A, Bavetta S, Price SJ (2009) Assessment of zero drift in the Codman intracranial pressure monitor: a study from 2 neurointensive care units. Neurosurgery 64(1):94–98, discussion 98–99

    Article  PubMed  Google Scholar 

  2. Bloomfield GL, Ridings PC, Blocher CR, Marmarou A, Sugerman HJ (1996) Effects of increased intra-abdominal pressure upon intracranial and cerebral perfusion pressure before and after volume expansion. J Trauma 40(6):936–941, discussion 941–943

    Article  PubMed  CAS  Google Scholar 

  3. Bloomfield GL, Ridings PC, Blocher CR, Marmarou A, Sugerman HJ (1997) A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Crit Care Med 25(3):496–503

    Article  PubMed  CAS  Google Scholar 

  4. Doyle DJ, Mark PW (1992) Analysis of intracranial pressure. J Clin Monit 8(1):81–90

    Article  PubMed  CAS  Google Scholar 

  5. Gaab MR, Heissler HE (1984) ICP monitoring. Crit Rev Biomed Eng 11(3):189–250

    PubMed  CAS  Google Scholar 

  6. Ginggen A, Tardy Y, Crivelli R, Bork T, Renaud P (2008) A telemetric pressure sensor system for biomedical applications. IEEE Trans Biomed Eng 55(4):1374–1381

    Article  PubMed  Google Scholar 

  7. Gudmundsson FF, Viste A, Gislason H, Svanes K (2002) Comparison of different methods for measuring intra-abdominal pressure. Intensive Care Med 28(4):509–514

    Article  PubMed  CAS  Google Scholar 

  8. Halverson A, Buchanan R, Jacobs L, Shayani V, Hunt T, Riedel C, Sackier J (1998) Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc 12(3):266–269

    Article  PubMed  CAS  Google Scholar 

  9. Heppner F, Lanner G, Rodler H (1976) Telemetry of intracranial pressure. Acta Neurochir (Wien) 33(1–2):37–43

    Article  CAS  Google Scholar 

  10. Van Hulst RA, Hasan D, Lachmann B (2002) Intracranial pressure, brain PCO2, PO2, and pH during hypo- and hyperventilation at constant mean airway pressure in pigs. Intensive Care Med 28(1):68–73

    Article  PubMed  Google Scholar 

  11. Josephs LG, Este-McDonald JR, Birkett DH, Hirsch EF (1994) Diagnostic laparoscopy increases intracranial pressure. J Trauma 36(6):815–818, discussion 818–819

    Article  PubMed  CAS  Google Scholar 

  12. Kaiser GM, Frühauf NR (2007) Method of intracranial pressure monitoring and cerebrospinal fluid sampling in swine. Lab Anim 41(1):80–85

    Article  PubMed  CAS  Google Scholar 

  13. Kasotakis G, Michailidou M, Bramos A, Chang Y, Velmahos G, Alam H, King D, De Moya MA (2012) Intraparenchymal vs extracranial ventricular drain intracranial pressure monitors in traumatic brain injury: less is more? J Am Coll Surg 214(6):950–957

    Article  PubMed  Google Scholar 

  14. Kiefer M, Antes S, Leonhardt S, Schmitt M, Orakcioglu B, Sakowitz OW, Eymann R (2012) Telemetric ICP measurement with the first CE-approved device: data from animal experiments and initial clinical experiences. Acta Neurochir Suppl 114:111–116

    Article  PubMed  Google Scholar 

  15. Lescot T, Reina V, Le Manach Y, Boroli F, Chauvet D, Boch A-L, Puybasset L (2011) In vivo accuracy of two intraparenchymal intracranial pressure monitors. Intensive Care Med 37(5):875–879

    Article  PubMed  Google Scholar 

  16. Miyake H, Ohta T, Kajimoto Y, Matsukawa M (1997) A new ventriculoperitoneal shunt with a telemetric intracranial pressure sensor: clinical experience in 94 patients with hydrocephalus. Neurosurgery 40(5):931–935

    Article  PubMed  CAS  Google Scholar 

  17. Morgalla MH, Mettenleiter H, Bitzer M, Fretschner R, Grote EH (1999) ICP measurement control: laboratory test of 7 types of intracranial pressure transducers. J Med Eng Technol 23(4):144–151

    Article  PubMed  CAS  Google Scholar 

  18. Orakcioglu B, Beynon C, Kentar MM, Eymann R, Kiefer M, Sakowitz OW (2012) Intracranial pressure telemetry: first experience of an experimental in vivo study using a new device. Acta Neurochir Suppl 114:105–110

    Article  PubMed  Google Scholar 

  19. Raboel PH, Bartek J Jr, Andresen M, Bellander BM, Romner B (2012) Intracranial pressure monitoring: invasive versus non-invasive methods-a review. Crit Care Res Pract 2012:950393

    PubMed  CAS  Google Scholar 

  20. Richard KE, Block FR, Weiser RR (1999) First clinical results with a telemetric shunt-integrated ICP-sensor. Neurol Res 21(1):117–120

    PubMed  CAS  Google Scholar 

  21. Rosenthal RJ, Hiatt JR, Phillips EH, Hewitt W, Demetriou AA, Grode M (1997) Intracranial pressure. Effects of pneumoperitoneum in a large-animal model. Surg Endosc 11(4):376–380

    Article  PubMed  CAS  Google Scholar 

  22. Schaller WF (1933) The propriety of diagnostic lumbar puncture in intracranial hypertension. J Neurol Psychopathol 14(54):116–123

    Article  PubMed  CAS  Google Scholar 

  23. Schödel P, Proescholdt M, Ullrich O-W, Brawanski A, Schebesch K-M (2012) An outcome analysis of two different procedures of burr-hole trephine and external ventricular drainage in acute hydrocephalus. J Clin Neurosci 19(2):267–270

    Article  PubMed  Google Scholar 

  24. Stehlin E, Malpas S, Heppner P, Hu P, Lim M, Budgett D (2012) Implantable ICP monitor for improved hydrocephalus management. Acta Neurochir Suppl 114:101–104

    Article  PubMed  Google Scholar 

  25. The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care (2000) Indications for intracranial pressure monitoring. J Neurotrauma 17(6–7):479–491

    Google Scholar 

  26. Wiegand C, Richards P (2007) Measurement of intracranial pressure in children: a critical review of current methods. Dev Med Child Neurol 49(12):935–941

    Article  PubMed  CAS  Google Scholar 

  27. Wurst H, Schulte-Steinberg H, Finsterer U (1993) Pulmonary CO2 elimination in laparoscopic cholecystectomy. A clinical study. Anaesthesist 42(7):427–434

    PubMed  CAS  Google Scholar 

  28. Zhong J, Dujovny M, Park HK, Perez E, Perlin AR, Diaz FG (2003) Advances in ICP monitoring techniques. Neurol Res 25(4):339–350

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Baptist Freimann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freimann, F.B., Chopra, S.S., Unger, J.K. et al. Evaluation of a new large animal model for controlled intracranial pressure changes induced by capnoperitoneum. Acta Neurochir 155, 1345–1349 (2013). https://doi.org/10.1007/s00701-013-1696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-013-1696-y

Keywords

Navigation