Abstract
Purpose
This review summarizes protein biomarkers in mild and severe traumatic brain injury in adults and children and presents a strategy for conducting rationally designed clinical studies on biomarkers in head trauma.
Methods
We performed an electronic search of the National Library of Medicine’s MEDLINE and Biomedical Library of University of Pennsylvania database in March 2008 using a search heading of traumatic head injury and protein biomarkers. The search was focused especially on protein degradation products (spectrin breakdown product, c-tau, amyloid-β1–42) in the last 10 years, but recent data on “classical” markers (S-100B, neuron-specific enolase, etc.) were also examined.
Results
We identified 85 articles focusing on clinical use of biomarkers; 58 articles were prospective cohort studies with injury and/or outcome assessment.
Conclusions
We conclude that only S-100B in severe traumatic brain injury has consistently demonstrated the ability to predict injury and outcome in adults. The number of studies with protein degradation products is insufficient especially in the pediatric care. Cohort studies with well-defined end points and further neuroproteomic search for biomarkers in mild injury should be triggered. After critically reviewing the study designs, we found that large homogenous patient populations, consistent injury, and outcome measures prospectively determined cutoff values, and a combined use of different predictors should be considered in future studies.
Similar content being viewed by others
References
Abrahamson EE, Ikonomovic MD, Ciallella JR, Hope CE, Paljug WR, Isanski BA, Flood DG, Clark RS, Dekosky ST (2006) Caspase inhibition therapy abolishes brain trauma-induced increases in Abeta peptide: implications for clinical outcome. Exp Neurol 197:437–450
Anderson RE, Hansson LO, Nilsson O, jlai-Merzoug R, Settergren G (2001) High serum S100B levels for trauma patients without head injuries. Neurosurgery 48:1255–1258
Aono M, Bennett ER, Kim KS, Lynch JR, Myers J, Pearlstein RD, Warner DS, Laskowitz DT (2003) Protective effect of apolipoprotein E-mimetic peptides on N-methyl-d-aspartate excitotoxicity in primary rat neuronal–glial cell cultures. Neuroscience 116:437–445
Balestreri M, Czosnyka M, Chatfield DA, Steiner LA, Schmidt EA, Smielewski P, Matta B, Pickard JD (2004) Predictive value of Glasgow Coma Scale after brain trauma: change in trend over the past ten years. J Neurol Neurosurg Psychiatry 75:161–162
Bandyopadhyay S, Hennes H, Gorelick MH, Wells RG, Walsh-Kelly CM (2005) Serum neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury. Acad Emerg Med 12:732–738
Barzo P, Marmarou A, Fatouros P, Corwin F, Dunbar JG (1997) Acute blood–brain barrier changes in experimental closed head injury as measured by MRI and Gd-DTPA. Acta Neurochir Suppl 70:243–246
Baydas G, Nedzvetskii VS, Nerush PA, Kirichenko SV, Yoldas T (2003) Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci 73:1907–1916
Bazarian JJ, Beck C, Blyth B, von AN, Hasselblatt M (2006) Impact of creatine kinase correction on the predictive value of S-100B after mild traumatic brain injury. Restor Neurol Neurosci 24:163–172
Beaudeux J, Dequen L, Foglietti M (1999) Pathophysiologic aspects of S-100beta protein: a new biological marker of brain pathology. Ann Biol Clin (Paris) 57:261–272
Beems T, Simons KS, Van Geel WJ, De Reus HP, Vos PE, Verbeek MM (2003) Serum- and CSF-concentrations of brain specific proteins in hydrocephalus. Acta Neurochir (Wien) 145:37–43
Beers SR, Berger RP, Adelson PD (2007) Neurocognitive outcome and serum biomarkers in inflicted versus non-inflicted traumatic brain injury in young children. J Neurotrauma 24:97–105
Berg J, Tagliaferri F, Servadei F (2005) Cost of trauma in Europe. Eur J Neurol 12(Suppl 1):85–90
Berger RP (2006) The use of serum biomarkers to predict outcome after traumatic brain injury in adults and children. J Head Trauma Rehabil 21:315–333
Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 103:61–68
Berger RP, Beers SR, Richichi R, Wiesman D, Adelson PD (2007) Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J Neurotrauma 24:1793–1801
Berger RP, Dulani T, Adelson PD, Leventhal JM, Richichi R, Kochanek PM (2006) Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics 117:325–332
Berger RP, Pierce MC, Wisniewski SR, Adelson PD, Clark RS, Ruppel RA, Kochanek PM (2002) Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics 109:E31
Berger RP, Pierce MC, Wisniewski SR, Adelson PD, Kochanek PM (2002) Serum S100B concentrations are increased after closed head injury in children: a preliminary study. J Neurotrauma 19:1405–1409
Biberthaler P, Linsenmeier U, Pfeifer KJ, Kroetz M, Mussack T, Kanz KG, Hoecherl EF, Jonas F, Marzi I (2006) Serum S-100B concentration provides additional information fot the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock 25:446–453
Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378
Blasko I, Beer R, Bigl M, Apelt J, Franz G, Rudzki D, Ransmayr G, Kampfl A, Schliebs R (2004) Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease beta-secretase (BACE-1). J Neural Transm 111:523–536
Blennow K, Hesse C, Fredman P (1994) Cerebrospinal fluid apolipoprotein E is reduced in Alzheimer's disease. Neuroreport 5:2534–2536
Blennow K, Nellgard B (2004) Amyloid beta 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 62:159–160
Blomquist S, Johnsson P, Luhrs C, Malmkvist G, Solem JO, Alling C, Stahl E (1997) The appearance of S-100 protein in serum during and immediately after cardiopulmonary bypass surgery: a possible marker for cerebral injury. J Cardiothorac Vasc Anesth 11:699–703
Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons (2007) Guidelines for the management of severe traumatic brain injury. J Neurotrauma 24(Suppl):1–106
Brana C, Benham CD, Sundstrom LE (1999) Calpain activation and inhibition in organotypic rat hippocampal slice cultures deprived of oxygen and glucose. Eur J Neurosci 11:2375–2384
Bruns J Jr, Hauser WA (2003) The epidemiology of traumatic brain injury: a review. Epilepsia 44(Suppl 10):2–10
Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130
Buki A, Farkas O, Doczi T, Povlishock JT (2003) Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma 20:261–268
Buki A, Koizumi H, Povlishock JT (1999) Moderate posttraumatic hypothermia decreases early calpain-mediated proteolysis and concomitant cytoskeletal compromise in traumatic axonal injury. Exp Neurol 159:319–328
Buki A, Okonkwo DO, Povlishock JT (1999) Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J Neurotrauma 16:511–521
Buki A, Siman R, Trojanowski JQ, Povlishock JT (1999) The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol 58:365–375
Bulut M, Koksal O, Dogan S, Bolca N, Ozguc H, Korfali E, Ilcol YO, Parklak M (2006) Tau protein as a serum marker of brain damage in mild traumatic brain injury: preliminary results. Adv Ther 23:12–22
Cardali S, Maugeri R (2006) Detection of alpha II-spectrin and breakdown products in humans after severe traumatic brain injury. J Neurosurg Sci 50:25–31
Carty H, Pierce A (2002) Non-accidental injury: a retrospective analysis of a large cohort. Eur Radiol 12:2919–2925
Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH (2004) Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol 165:357–371
da Rocha AB, Schneider RF, de Freitas GR, Andre C, Grivicich I, Zanoni C, Fossa A, Gehrke JT, Pereira JG (2006) Role of serum S100B as a predictive marker of fatal outcome following isolated severe head injury or multitrauma in males. Clin Chem Lab Med 44:1234–1242
de Boussard CN, Lundin A, Karlstedt D, Edman G, Bartfai A, Borg J (2005) S100 and cognitive impairment after mild traumatic brain injury. J Rehabil Med 37:53–57
De Kruijk Jr, Leffers P, Menheere PP, Meerhoff S, Twijnstra A (2001) S-100B and neuron-specific enolase in serum of mild traumatic brain injury patients. A comparison with health controls. Acta Neurol Scand 103:175–179
De Nygren BC, Fredman P, Lundin A, Andersson K, Edman G, Borg J (2004) S100 in mild traumatic brain injury. Brain Inj 18:671–683
Dekosky ST, Abrahamson EE, Ciallella JR, Paljug WR, Wisniewski SR, Clark RS, Ikonomovic MD (2007) Association of increased cortical soluble abeta42 levels with diffuse plaques after severe brain injury in humans. Arch Neurol 64:541–544
Diakowski W, Sikorski AF (1995) Interaction of brain spectrin (fodrin) with phospholipids. Biochemistry 34:13252–13258
Duhaime AC, Partington MD (2002) Overview and clinical presentation of inflicted head injury in infants. Neurosurg Clin N Am 13:149–154
Emmerling MR, Morganti-Kossmann MC, Kossmann T, Stahel PF, Watson MD, Evans LM, Mehta PD, Spiegel K, Kuo YM (2000) Traumatic brain injury elevates the Alzheimer's amyloid peptide A beta 42 in human CSF. A possible role for nerve cell injury. Ann N Y Acad Sci 903:118–122
Ergun R, Bostanci U, Akdemir G, Beskonakli E, Kaptanoglu E, Gursoy F, Taskin Y (1998) Prognostic value of serum neuron-specific enolase levels after head injury. Neurol Res 20:418–420
Fagan AM, Younkin LH, Morris JC, Fryer JD, Cole TG, Younkin SG, Holtzman DM (2000) Differences in the Abeta40/Abeta42 ratio associated with cerebrospinal fluid lipoproteins as a function of apolipoprotein E genotype. Ann Neurol 48:201–210
Fano G, Biocca S, Fulle S, Mariggio MA, Belia S, Calissano P (1995) The S-100: a protein family in search of a function. Prog Neurobiol 46:71–82
Farkas O, Polgar B, Szekeres-Bartho J, Doczi T, Povlishock JT, Buki A (2005) Spectrin breakdown products in the cerebrospinal fluid in severe head injury—preliminary observations. Acta Neurochir (Wien) 147:855–861
Fasulo L, Ugolini G, Visintin M, Bradbury A, Brancolini C, Verzillo V, Novak M, Cattaneo A (2000) The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis. J Neurochem 75:624–633
Fatouros PP, Marmarou A (1999) Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg 90:109–115
Field AS, Hasan K, Jellison BJ, Arfanakis K, Alexander AL (2003) Diffusion tensor imaging in an infant with traumatic brain swelling. AJNR Am J Neuroradiol 24:1461–1464
Finkelstein E, Corso P, Miller T (2006) The incidence and economic burden of injuries in the United States. Oxford University Press, New York
Finsterer J, Exner M, Rumpold H (2004) Cerebrospinal fluid neuron-specific enolase in non-selected patients. Scand J Clin Lab Invest 64:553–558
Fletcher L, Rider CC, Taylor CB (1976) Enolase isoenzymes. III. Chromatographic and immunological characteristics of rat brain enolase. Biochim Biophys Acta 452:245–252
Formisano R, Carlesimo GA, Sabbadini M, Loasses A, Penta F, Vinicola V, Caltagirone C (2004) Clinical predictors and neuropsychological outcome in severe traumatic brain injury patients. Acta Neurochir (Wien) 146:457–462
Franz G, Beer R, Kampfl A, Engelhardt K, Schmutzhard E, Ulmer H, Deisenhammer F (2003) Amyloid beta 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60:1457–1461
Gabbita SP, Scheff SW, Menard RM, Roberts K, Fugaccia I, Zemlan FP (2005) Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury. J Neurotrauma 22:83–94
Ghajar J (2000) Traumatic brain injury. Lancet 356:923–929
Glenner GG, Wong CW (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3:519–526
Goodman SR, Zimmer WE, Clark MB, Zagon IS, Barker JE, Bloom ML (1995) Brain spectrin: of mice and men. Brain Res Bull 36:593–606
Hackbarth RM, Rzeszutko KM, Sturm G, Donders J, Kuldanek AS, Sanfilippo DJ (2002) Survival and functional outcome in pediatric traumatic brain injury: a retrospective review and analysis of predictive factors. Crit Care Med 30:1630–1635
Hardemark HG, Ericsson N, Kotwica Z, Rundstrom G, Mendel-Hartvig I, Olsson Y, Pahlman S, Persson L (1989) S-100 protein and neuron-specific enolase in CSF after experimental traumatic or focal ischemic brain damage. J Neurosurg 71:727–731
Harris AS, Croall DE, Morrow JS (1988) The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site. J Biol Chem 263:15754–15761
Haviland J, Russell RI (1997) Outcome after severe non-accidental head injury. Arch Dis Child 77:504–507
Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F, Hosotubo H, Kieko F, Yamashita T (2004) Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 22:102–107
Herrmann M, Curio N, Jost S, Wunderlich MT, Synowitz H, Wallesch CW (1999) Protein S-100B and neuron specific enolase as early neurobiochemical markers of the severity of traumatic brain injury. Restor Neurol Neurosci 14:109–114
Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ (2000) Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 31:2670–2677
Holmberg B, Johnels B, Blennow K, Rosengren L (2003) Cerebrospinal fluid Abeta42 is reduced in multiple system atrophy but normal in Parkinson's disease and progressive supranuclear palsy. Mov Disord 18:186–190
Horsburgh K, Cole GM, Yang F, Savage MJ, Greenberg BD, Gentleman SM, Graham DI, Nicoll JA (2000) beta-amyloid (Abeta)42(43), abeta42, abeta40 and apoE immunostaining of plaques in fatal head injury. Neuropathol Appl Neurobiol 26:124–132
Horsburgh K, Graham DI, Stewart J, Nicoll JA (1999) Influence of apolipoprotein E genotype on neuronal damage and apoE immunoreactivity in human hippocampus following global ischemia. J Neuropathol Exp Neurol 58:227–234
Horsburgh K, McCarron MO, White F, Nicoll JA (2000) The role of apolipoprotein E in Alzheimer's disease, acute brain injury and cerebrovascular disease: evidence of common mechanisms and utility of animal models. Neurobiol Aging 21:245–255
Huisman TA (2003) Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 13:2283–2297
Ingebrigtsen T, Romner B (2002) Biochemical serum markers of traumatic brain injury. J Trauma 52:798–808
Ingebrigtsen T, Romner B (2003) Biochemical serum markers for brain damage: a short review with emphasis on clinical utility in mild head injury. Restor Neurol Neurosci 21:171–176
Ingebrigtsen T, Romner B, Kongstad P, Langbakk B (1995) Increased serum concentrations of protein S-100 after minor head injury: a biochemical serum marker with prognostic value? J Neurol Neurosurg Psychiatry 59:103–104
Ingebrigtsen T, Romner B, Marup-Jensen S, Dons M, Lundqvist C, Bellner J, Alling C, Borgesen SE (2000) The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Inj 14:1047–1055
Jensen M, Schroder J, Blomberg M, Engvall B, Pantel J, Ida N, Basun H, Wahlund LO, Werle E (1999) Cerebrospinal fluid A beta42 is increased early in sporadic Alzheimer's disease and declines with disease progression. Ann Neurol 45:504–511
Kampfl A, Posmantur R, Nixon R, Grynspan F, Zhao X, Liu SJ, Newcomb JK, Clifton GL, Hayes RL (1996) mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury. J Neurochem 67:1575–1583
Kanai M, Matsubara E, Isoe K, Urakami K, Nakashima K, Arai H, Sasaki H, Abe K, Iwatsubo T (1998) Longitudinal study of cerebrospinal fluid levels of tau, A beta1–40, and A beta1–42(43) in Alzheimer's disease: a study in Japan. Ann Neurol 44:17–26
Kavalci C, Pekdemir M, Durukan P, Ilhan N, Yildiz M, Serhatlioglu S, Seckin D (2007) The value of serum tau protein for the diagnosis of intracranial injury in minor head trauma. Am J Emerg Med 25:391–395
Kay AD, Petzold A, Kerr M, Keir G, Thompson E, Nicoll JA (2003) Alterations in cerebrospinal fluid apolipoprotein E and amyloid beta-protein after traumatic brain injury. J Neurotrauma 20:943–952
Kay AD, Petzold A, Kerr M, Keir G, Thompson EJ, Nicoll JA (2003) Cerebrospinal fluid apolipoprotein E concentration decreases after traumatic brain injury. J Neurotrauma 20:243–250
King WJ, MacKay M, Sirnick A (2003) Shaken baby syndrome in Canada: clinical characteristics and outcomes of hospital cases. CMAJ 168:155–159
Korfias S, Stranjalis G, Boviatsis E, Psachoulia C, Jullien G, Gregson B, Mendelow AD, Sakas DE (2007) Serum S-100B protein monitoring in patients with severe traumatic brain injury. Intensive Care Med 33:255–260
Kosik KS, Finch EA (1987) MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci 7:3142–3153
Laskowitz DT, Sheng H, Bart RD, Joyner KA, Roses AD, Warner DS (1997) Apolipoprotein E-deficient mice have increased susceptibility to focal cerebral ischemia. J Cereb Blood Flow Metab 17:753–758
Laskowitz DT, Thekdi AD, Thekdi SD, Han SK, Myers JK, Pizzo SV, Bennett ER (2001) Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp Neurol 167:74–85
Leviton A, Dammann O (2002) Brain damage markers in children. Neurobiological and clinical aspects. Acta Paediatr 91:9–13
Li N, Shen JK, Zhao WG, Cai Y, Li YF, Zhan SK (2004) S-100B and neuron specific enolase in outcome prediction of severe head injury. Chin J Traumatol 7:156–158
LRJ HPN (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66:351–366
Lynch JR, Morgan D, Mance J, Matthew WD, Laskowitz DT (2001) Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J Neuroimmunol 114:107–113
Marmarou A, Portella G, Barzo P, Signoretti S, Fatouros P, Beaumont A, Jiang T, Bullock R (2000) Distinguishing between cellular and vasogenic edema in head injured patients with focal lesions using magnetic resonance imaging. Acta Neurochir Suppl 76:349–351
McKeating EG, Andrews PJ, Mascia L (1998) Relationship of neuron specific enolase and protein S-100 concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury. Acta Neurochir Suppl 71:117–119
mer-Wahlin I, Herbst A, Lindoff C, Thorngren-Jerneck K, Marsal K, Alling C (2001) Brain-specific NSE and S-100 proteins in umbilical blood after normal delivery. Clin Chim Acta 304:57–63
Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H (1999) Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 45:138–141
Miyata M, Smith JD (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 14:55–61
Mori T, Morimoto K, Hayakawa T, Ushio Y, Mogami H, Sekiguchi K (1978) Radioimmunoassay of astroprotein (an astrocyte-specific cerebroprotein) in cerebrospinal fluid and its clinical significance. Neurol Med Chir (Tokyo) 18:25–31
Morris MW, Smith S, Cressman J, Ancheta J (2000) Evaluation of infants with subdural hematoma who lack external evidence of abuse. Pediatrics 105:549–553
Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D, Chang L, Miller B, Clark C, Green R (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer's disease. Ann Neurol 38:643–648
Muller K, Townend W, Biasca N, Unden J, Waterloo K, Romner B, Ingebrigtsen T (2007) S100B serum level predicts computed tomography findings after minor head injury. J Trauma 62:1452–1456
Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349:1436–1442
Naeimi ZS, Weinhofer A, Sarahrudi K, Heinz T, Vecsei V (2006) Predictive value of S-100B protein and neuron specific-enolase as markers of traumatic brain damage in clinical use. Brain Inj 20:463–468
Nathan BP, Bellosta S, Sanan DA, Weisgraber KH, Mahley RW, Pitas RE (1994) Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264:850–852
Netto CB, Conte S, Leite MC, Pires C, Martins TL, Vidal P, Benfato MS, Giugliani R, Goncalves CA (2006) Serum S100B protein is increased in fasting rats. Arch Med Res 37:683–686
Newcomb JK, Kampfl A, Posmantur RM, Zhao X, Pike BR, Liu SJ, Clifton GL, Hayes RL (1997) Immunohistochemical study of calpain-mediated breakdown products to alpha-spectrin following controlled cortical impact injury in the rat. J Neurotrauma 14:369–383
Nicoll JA, Martin L, Stewart J, Murray LS, Love S, Kennedy PG (2001) Involvement of apolipoprotein E in herpes simplex encephalitis. Neuroreport 12:695–698
Nygaard O, Langbakk B, Romner B (1998) Neuron-specific enolase concentrations in serum and cerebrospinal fluid in patients with no previous history of neurological disorder. Scand J Clin Lab Invest 58:183–186
Nylen K, Ost M, Csajbok LZ, Nilsson I, Blennow K, Nellgard B, Rosengren L (2006) Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci 240:85–91
Olsson A, Csajbok L, Ost M, Hoglund K, Nylen K, Rosengren L, Nellgard B, Blennow K (2004) Marked increase of beta-amyloid(1–42) and amyloid precursor protein in ventricular cerebrospinal fluid after severe traumatic brain injury. J Neurol 251:870–876
Ost M, Nylen K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelso C, Nellgard P, Rosengren L, Blennow K (2006) Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67:1600–1604
Otto M, Esselmann H, Schulz-Shaeffer W, Neumann M, Schroter A, Ratzka P, Cepek L, Zerr I, Steinacker P (2000) Decreased beta-amyloid1–42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurology 54:1099–1102
Paterakis K, Karantanas AH, Komnos A, Volikas Z (2000) Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 49:1071–1075
Pelinka LE, Bahrami S, Szalay L, Umar F, Redl H (2003) Hemorrhagic shock induces an S 100 B increase associated with shock severity. Shock 19:422–426
Pelinka LE, Harada N, Szalay L, Jafarmadar M, Redl H, Bahrami S (2004) Release of S100B differs during ischemia and reperfusion of the liver, the gut, and the kidney in rats. Shock 21:72–76
Pelinka LE, Hertz H, Mauritz W, Harada N, Jafarmadar M, Albrecht M, Redl H, Bahrami S (2005) Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock 24:119–123
Pelinka LE, Jafarmadar M, Redl H, Bahrami S (2004) Neuron-specific-enolase is increased in plasma after hemorrhagic shock and after bilateral femur fracture without traumatic brain injury in the rat. Shock 22:88–91
Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H (2004) GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 21:1553–1561
Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H, Raabe A (2004) Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 57:1006–1012
Peterfalvi A, Farkas O, Tamas A, Zsombok A, Reglodi D, Buki A, Lengradi I, Doczi T (2003) Effects of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) in a rat model of diffuse axonal injury. Ideggyogy Sz 56:1977
Pike BR, Flint J, Dutta S, Johnson E, Wang KK, Hayes RL (2001) Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 78:1297–1306
Pike BR, Zhao X, Newcomb JK, Glenn CC, Anderson DK, Hayes RL (2000) Stretch injury causes calpain and caspase-3 activation and necrotic and apoptotic cell death in septo-hippocampal cell cultures. J Neurotrauma 17:283–298
Pike BR, Zhao X, Newcomb JK, Posmantur RM, Wang KK, Hayes RL (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. Neuroreport 9:2437–2442
Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, Demery JA, Liu MC, Aikman JM (2007) Clinical significance of alpha II-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 24:354–366
Povlishock JT, Christman CW (1995) The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 12:555–564
Povlishock JT, Pettus EH (1996) Traumatically induced axonal damage: evidence for enduring changes in axolemmal permeability with associated cytoskeletal change. Acta Neurochir Suppl 66:81–86
Raabe A, Grolms C, Sorge O, Zimmermann M, Seifert V (1999) Serum S-100B protein in severe head injury. Neurosurgery 45:477–483
Raabe A, Menon DK, Gupta S, Czosnyka M, Pickard JD (1998) Jugular venous and arterial concentrations of serum S-100B protein in patients with severe head injury: a pilot study. J Neurol Neurosurg Psychiatry 65:930–932
Raby CA, Morganti-Kossmann MC, Kossmann T, Stahel PF, Watson MD, Evans LM, Mehta PD, Spiegel K, Kuo YM (1998) Traumatic brain injury increases beta-amyloid peptide 1–42 in cerebrospinal fluid. J Neurochem 71:2505–2509
Rifai N, Christenson RH, Gelman BB, Silverman LM (1987) Changes in cerebrospinal fluid IgG and apolipoprotein E indices in patients with multiple sclerosis during demyelination and remyelination. Clin Chem 33:1155–1157
Ringger NC, O'Steen BE, Brabham JG, Silver X, Pineda J, Wang KK, Hayes RL, Papa L (2004) A novel marker for traumatic brain injury: CSF alpha II-spectrin breakdown product levels. J Neurotrauma 21:1443–1456
Roberts GW, Gentleman SM, Lynch A, Graham DI (1991) beta A4 amyloid protein deposition in brain after head trauma. Lancet 338:1422–1423
Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE (2000) Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma 17:641–647
Ross SA, Cunningham RT, Johnston CF, Rowlands BJ (1996) Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 10:471–476
Rothoerl RD, Brawanski A, Woertgen C (2000) S-100B protein serum levels after controlled cortical impact injury in the rat. Acta Neurochir (Wien) 142:199–203
Rothoerl RD, Woertgen C, Holzschuh M, Metz C, Brawanski A (1998) S-100 serum levels after minor and major head injury. J Trauma 45:765–767
Saatman KE, Bozyczko-Coyne D, Marcy V, Siman R, McIntosh TK (1996) Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J Neuropathol Exp Neurol 55:850–860
Sandor J, Szucs M, Kiss I, Ember I, Csepregi G, Futo J, Vimlati L, Pal J, Buki A (2003) Risk factors for fatal outcome in subdural hemorrhage. Ideggyogy Sz 56:386–395
Savola O, Hillbom M (2003) Early predictors of post-concussion symptoms in patients with mild head injury. Eur J Neurol 10:175–181
Sawauchi S, Taya K, Murakami S, Ishi T, Ohtsuka T, Kato N, Kaku S, Tanaka T, Morooka S (2005) Serum S-100B protein and neuron-specific enolase after traumatic brain injury. No Shinkei Geka 33:1073–1080
Schaan M, Jaksche H, Boszczyk B (2002) Predictors of outcome in head injury: proposal of a new scaling system. J Trauma 52:667–674
Schauwecker PE, Cogen JP, Jiang T, Cheng HW, Collier TJ, McNeill TH (1998) Differential regulation of astrocytic mRNAs in the rat striatum after lesions of the cortex or substantia nigra. Exp Neurol 149:87–96
Schmechel D, Marangos PJ, Brightman M (1978) Neuron-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276:834–836
Schofield PW, Tang M, Marder K, Bell K, Dooneief G, Chun M, Sano M, Stern Y, Mayeux R (1997) Alzheimer's disease after remote head injury: an incidence study. J Neurol Neurosurg Psychiatry 62:119–124
Schuhmann MU, Stiller D, Skardelly M, Bernarding J, Klinge PM, Samii A, Samii M, Brinker T (2003) Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study. J Neurotrauma 20:725–743
Sergeant N, Delacourte A, Buee L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 1739:179–197
Shaw GJ, Jauch EC, Zemlan FP (2002) Serum cleaved tau protein levels and clinical outcome in adult patients with closed head injury. Ann Emerg Med 39:254–257
Shore PM, Berger RP, Varma S, Janesko KL, Wisniewski SR, Clark RS, Adelson PD, Thomas NJ, Lai YC (2007) Cerebrospinal fluid biomarkers versus Glasgow coma scale and Glasgow outcome scale in pediatric traumatic brain injury: the role of young age and inflicted injury. J Neurotrauma 24:75–86
Sjogren M, Davidsson P, Wallin A, Granerus AK, Grundstrom E, Askmark H, Vanmechelen E, Blennow K (2002) Decreased CSF-beta-amyloid 42 in Alzheimer's disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms. Dement Geriatr Cogn Disord 13:112–118
Skogseid IM, Nordby HK, Urdal P, Paus E, Lilleaas F (1992) Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochir (Wien) 115:106–111
Spinella PC, Dominguez T, Drott HR, Huh J, McCormick L, Rajendra A, Argon J, McIntosh T, Helfaer M (2003) S-100beta protein-serum levels in healthy children and its association with outcome in pediatric traumatic brain injury. Crit Care Med 31:939–945
Stalnacke BM, Elgh E, Sojka P (2005) One-year follow-up of mild traumatic brain injury: cognition, disability and life satisfaction of patients seeking consultation. J Rehabil Med 39:405–411
Stapert S, de KJ, Houx P, Menheere P, Twijnstra A, Jolles J (2005) S-100B concentration is not related to neurocognitive performance in the first month after mild traumatic brain injury. Eur Neurol 53:22–26
Stone JR, Okonkwo DO, Singleton RH, Mutlu LK, Helm GA, Povlishock JT (2002) Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid Beta peptide in traumatic axonal injury. J Neurotrauma 19:601–614
Stranjalis G, Korfias S, Papapetrou C, Kouyialis A, Boviatsis E, Psachoulia C, Sakas DE (2004) Elevated serum S-100B protein as a predictor of failure to short-term return to work or activities after mild head injury. J Neurotrauma 21:1070–1075
Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien) 148:255–268
Takanashi Y, Shinonaga M (2001) Magnetic resonance imaging for surgical consideration of acute head injury. J Clin Neurosci 8:240–244
Tamaoka A, Kondo T, Odaka A, Sahara N, Sawamura N, Ozawa K, Suzuki N, Shoji S, Mori H (1994) Biochemical evidence for the long-tail form (A beta 1–42/43) of amyloid beta protein as a seed molecule in cerebral deposits of Alzheimer's disease. Biochem Biophys Res Commun 205:834–842
Teasdale GM, Nicoll JA, Murray G, Fiddes M (1997) Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350:1069–1071
Tolias CM, Bullock MR (2004) Critical appraisal of neuroprotection trials in head injury: what have we learned? NeuroRx 1:71–79
Townend W, Ingebrigtsen T (2006) Head injury outcome prediction: a role for protein S-100B? Injury 37:1098–1108
Ucar T, Baykal A, Akyuz M, Dosemeci L, Toptas B (2004) Comparison of serum and cerebrospinal fluid protein S-100b levels after severe head injury and their prognostic importance. J Trauma 57:95–98
Unden J, Astrand R, Waterloo K, Ingebrigtsen T, Bellner J, Reinstrup P, Andsberg G, Romner B (2007) Clinical significance of serum S100B levels in neurointensive care. Neurocrit Care 6:94–99
Vajtr D, Prusa R, Kukacka J, Houst'ava L, Samal F, Pelichovska M, Strejc P, Toupalik P (2007) Evaluation of relevance in concussion and damage of health by monitoring of neuron specific enolase and S-100b protein. Soud Lek 52:43–46
Van Nostrand WE, Wagner SL, Shankle WR, Farrow JS, Dick M, Rozemuller JM, Kuiper MA, Wolters EC, Zimmerman J (1992) Decreased levels of soluble amyloid beta-protein precursor in cerebrospinal fluid of live Alzheimer disease patients. Proc Natl Acad Sci U S A 89:2551–2555
Vos PE, Lamers KJ, Hendriks JC, van HM, Beems T, Zimmerman C, van GW, de RH, Biert J, Verbeek MM (2004) Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 62:1303–1310
Wang KK, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian RV, Glantz SB, Morrow JS (1998) Simultaneous degradation of alpha II- and beta II-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273:22490–22497
Whitaker-Azmitia PM, Wingate M, Borella A, Gerlai R, Roder J, Azmitia EC (1997) Transgenic mice overexpressing the neurotrophic factor S-100 beta show neuronal cytoskeletal and behavioral signs of altered aging processes: implications for Alzheimer's disease and Down's syndrome. Brain Res 776:51–60
White F, Nicoll JA, Horsburgh K (2001) Alterations in ApoE and ApoJ in relation to degeneration and regeneration in a mouse model of entorhinal cortex lesion. Exp Neurol 169:307–318
Wiesmann M, Missler U, Gottmann D, Gehring S (1998) Plasma S-100b protein concentration in healthy adults is age- and sex-independent. Clin Chem 44:1056–1058
Woertgen C, Rothoerl RD, Brawanski A (2001) Neuron-specific enolase serum levels after controlled cortical impact injury in the rat. J Neurotrauma 18:569–573
Woertgen C, Rothoerl RD, Holzschuh M, Metz C, Brawanski A (1997) Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir (Wien) 139:1161–1164
Woertgen C, Rothoerl RD, Metz C, Brawanski A (1999) Comparison of clinical, radiologic, and serum marker as prognostic factors after severe head injury. J Trauma 47:1126–1130
Woertgen C, Rothoerl RD, Wiesmann M, Missler U, Brawanski A (2002) Glial and neuronal serum markers after controlled cortical impact injury in the rat. Acta Neurochir Suppl 81:205–207
Yakovlev AG, Faden AI (2004) Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRx 1:5–16
Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T (1995) Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol 43:267–270
Zemlan FP, Jauch EC, Mulchahey JJ, Gabbita SP, Rosenberg WS, Speciale SG, Zuccarello M (2002) C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res 947:131–139
Zemlan FP, Rosenberg WS, Luebbe PA, Campbell TA, Dean GE, Weiner NE, Cohen JA, Rudick RA, Woo D (1999) Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins. J Neurochem 72:741–750
Zimmer DB, Cornwall EH, Landar A, Song W (1995) The S100 protein family: history, function, and expression. Brain Res Bull 37:417–429
Acknowledgements
This work was supported by the Hungarian Science Funds (OTKA T048724/2005 and OTKA 72240). The authors wish to thank to Joel H. Greenberg Ph.D., Katalin Kariko Ph.D., and Brian Edlow M.D. for critical review of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kövesdi, E., Lückl, J., Bukovics, P. et al. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir 152, 1–17 (2010). https://doi.org/10.1007/s00701-009-0463-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00701-009-0463-6
Keywords
Profiles
- Endre Czeiter View author profile